L’oscillateur harmonique
(corrections)

O Physicité

Ces corrections sont tres longues, il y a donc trés probablement des erreurs. Si vous en
repérez, ou bien si vous ne comprenez simplement pas quelque chose, venez poser la question
sur le discord, si c’est une erreur je la rectifierai, et sinon quelqu’un vous expliquera gentiment,
et jJadapterai la correction pour que c¢a soit plus clair. En résumé, si vous ne comprenez pas
quelque chose, c’est de ma faute, pas de la votre.

1 Développements limiteés

Exercice 1: Développements limités a l’ordre 1

1 —
1+=x mz<1

2.z2=a+¢ . ) ) ) .

Lo =200 209

zZ a+e a a e<a @ a
3.0=0¢+¢

co8(feq + €) = c08(0eq) + €08’ (0eq)e = cos(0eq) — sin(beq)e
4. r=1+¢
e’ =079 = 12 — o5 ¢ = ex (1+2e)
e<1 e<1
5. u=ug+e¢
eU0TE = et = U0(] 4 ¢)
exl

6. 3

s =)™ = (1=

(1+z)3/2 (1+2) <1 2
T.2=a+¢

r 1 _1(1+s>— _ 1( 45)
24 (a+e)t ot a/ e<a gt a
8. ]
x
— (1422 = 12
1+x ( 7) <1 2

9. r=2+4c¢

Exercice 2 : Solution approchée

On peut donc supposer que = < 1. Si on fait le DL & Uordre 1, cos(z) = 1, —5 = Leton

rl 1—z2 T
obtient x =k =0.1.
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O Physicité L’oscillateur harmonique (corrections)

Si on va a Uordre 2, on obtient :

11—z
2 _ ..
kl —2 = x
k—%:x(l—xQ)::c—x?’
On néglige le terme d’ordre 3 car il est négligeable devant les termes d’ordre 2.
2
% +x—k=0

C’est une équation quadratique, que l’'on sait résoudre :
1
x = %(—1 + v/ 1+ 2k?)

On choisit la solution en + car c’est la seule qui soit proche de 0.

x=-14++1+2k>=0.99

Il n’y a pas grand intérét a aller a Uordre 2. Numériquement, on trouve = = 0.97.

Exercice 3 : Pression dans une salle

1. b =3m, T = 300K.

2. PV =nRT, donc [RT] = (F.L7?)L3.N~! = F.L.N~!, avec F ’homogénéité d’une force. Et
[mg] = F. Donc :

[RT} _FLN' I
Mgl  FN-1
H = 8.6km. 5
P(z)— P, :P(*i—l) — _p=
(Z) 0 o\e 2K H OH
3.

|P(z) =Bl _ = -
7 7 =35 x 107" =0.03%

C’est donc une tres bonne approximation.

Exercice 4 : Champ de gravité terrestre

cf. cours page 8.

Exercice 5 : Point de Lagrange

1. On a la relation :

On réinjecte 02 = “Ms -

On divise par GMg :
0= —— - .
d? + (D — d)? JrD3
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O Physicité L’oscillateur harmonique (corrections)

=14+ —" g3
0 +(1_x)2+1‘

2.Sionposee=1—-2=0.011=1.1x10"? <« 1, ’équation devient :

a(l —e)?

1—(1-¢)®=——

S
La chose a voir est que «a est trés petit, en effet a = My/Mg = 3 x 1075, donc un terme en
% pourra étre du méme ordre de grandeur qu’un terme en ¢. Regardons le terme de droite :
a(1—5)2 _ a
52 E<21 52
d’'un DL :1—(1—¢)3 = 3¢ On obtient alors :
exl1

25 xe. Le terme 5 xe <25 care < 1. Le terme de gauche se simplifie a l'aide

€= (3)1/3 =1.0x1072

On obtient donc une bonne approximation. L’intérét de cette méthode n’est pas la valeur
numérique (on peut 'obtenir numériquement avec des méthodes informatiques) mais plutét
que le DL nous a donné une expression théorique du parameétre recherché, on connait donc
ses dépendances et sa monotonie par rapport aux différents parametres.

2 L’oscillateur harmonique en mécanique

Exercice 6 : Le systéme masse-ressort

1. i+ £z =0 cf. cours page 13
On pose wy = ,/%. La solution est de la forme :

x(t) = Acos(wot) + B sin(wyt)

z(t=0)=0
#(t=0) =vg

A=0
BUJQ =10
2(t) = %’) sin(wot)

2. 7 4+ wpz = g cf cours page 8. On résout d’abord ’équation homogene associée :
Z4+woz =0

Donc z,(t) = Acos(wot) + Bsin(wot) Et la solution particuliere est de la forme du second
membre, donc constante. On trouve z, = % On a donc :

z(t) = zp(t) + zp = Acos(wot) + B sin(wot) + %

At =0) =2+ =
At =0) = 0
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O Physicité L’oscillateur harmonique (corrections)

A =20
Bwy=0

On a alors :
2(t) = 29 cos(wot) + %
3. On fait le bilan des forces s appllquant sur le sytéeme : il y a la force de rappel élastique
Fel = —k(z — ly)iu,, la réaction du support R = Rii, (orthogonale au plan car il n’y a pas de

frottements) et le poids P. Il suffit de projeter le poids sur l'axe (Ox).

%—a/\

En appliquant les formules de trigonomeétrie dans le triangle du haut, on voit que P, =
—mgsin(a). On vérifie la projection en regardant les cas limites : si a = 0, le poids n’a pas
de composante horizontale, et si a = 7, le poids est simplement —mg selon l’axe (Ox). On
applique donc le principe fondamental de la dynamique en projection selon i, :

(0%

md = —k(x — ly) — mgsin(«)
I+ E:r: = Elo — gsin(«)
m m
i+ wir = wily — gsin(a)

La solution de l’équation homogene associée est xy(t) = Acos(wpt) + Bsin(wgt). La solution
particuliere est z, = [y — %@‘) Donc z(t) = Acos(wot) + Bsin(wot) + lp — %2@.
0 0

J,‘(t = 0) :lo
i(t=0)=0

pen ),
wo

Bwo =0
Finalement : ) )
S« S1801ye%
x(t) = J 2( ) cos(wot) + lo — 972()
“o “o

Exercice 7 : Ressorts équivalents

1. La masse M est soumise aux forces des deux ressorts. On projette selon ; :
Fi + Fy = —kl(l — lo) — k‘g(l — lo) = —(kl + kz)(l — lo)

On remarque qu’il s’agit de Uexpression de la force exercée par un ressort de longueur a vide [y
et de constante de raideur k., = k1 + k2. Par récurrence immédiate, pour n ressorts en parallele,

keq = zn: ki
i=1
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O Physicité L’oscillateur harmonique (corrections)

2. On appelle A le point d’attache des deux ressorts. il est clair que la longueur a vide
équivalente pour les deux ressorts est la somme des longueurs a vide de chacun des ressorts :
’équilibre glogal impose I’équilibre de chaque ressort. On applique le principe fondamental de
la dynamique projeté sur la verticale descendante au point A. Puisqu’il est de masse nulle, la
somme des forces qui s’exercent sur lui s’annule :

—k1(li = lo1) + ka(la — lp2) =0
La masse M est soumise a la force de rappel du ressort 2 :
F = —ka(la — lo2)
On cherche un expression de la forme :

F = —/{Teq(ll + 1o — o1 — 102)
k
ka(lo — lo2) = keq(li + 1o — lor — lo2) = keq(li — lo1) + keq(l2 — lo2) = keqk%(h —l02) + keq(l2 — lp2)

ky = kq(:i +1)

1 1 1

keq:kil_‘_k?

n
Par récurrence immédiate, pour n ressorts en série, la longueur a vide équivalente est ZZOZ"
. ’ . ’ . . /[/:1
et la raideur équivalent vérifie :

1 "1
Tl
eq i—0

Exercice 8 : Elastique coupé en deux

Puisque c’est une boucle, on peut considérer qu’il est constitué de deux ressorts identiques
(un de chaque c6té), chacun de raideur kg. Ils sont en paralléle, donc la raideur k£ de ’élastique
non coupé vaut : k = 2k, donc ky = k/2 = 5Nm~!. Une fois coupé, les deux branches se
retrouvent 'une derriere l'autre, donc en série. La constante de raideur équivalente vaut alors,
d’aprés l’exercice précédent : ﬁ = 725 keg = ko/2 =2.5Nm ™.

Réponse 3

Exercice 9 : Ressorts et gravité

1. On projette tout sur laxe (Oz). La masse m est soumise a son poids P = —myg, la
force de rappel du ressort du bas, F; = —k(z — lp) et la force de rappel du ressort du haut,
Fy =k((2L — 2) — lp). On applique le principe fondamental de la dynamique a la masse m :

mzZ = —k(z—1lp) — k(z — 2L+ 1lp) —mg

2k k 2k
i+ —z=—(Up—1lp+2L)—g=—L—g
m m m
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O Physicité L’oscillateur harmonique (corrections)

2% .
2

On pose wy =
Ftwiz=wil—g

2. On résout pour z constant :

g

Zeq = L — ;(2)
On remarque que plus lintensité de la pesanteur est faible, plus l’équilibre se rapproche d’une
situation symétrique, et plus la raideur des ressorts augmente, et moins 'impact de la gravité

se fait ressentir sur ’équilibre, ce qui est attendu.
3.
Ftwiz= Zegq

4. On résout 'équation homogene associée ? +wiz = 0, z,(t) = A cos(wot) + B sin(wpt). La solution
particuliére est de la méme forme que le second membre, c’est-a-dire constante, z, = z.,. On
a donc

z(t) = zp(t) + zp = Acos(wot) + Bsin(wot) + zeq

z(t=10) =0
At = 0) =0

{A + 2eg =0

On a les conditions initiales :

Bwo =0

2(t) = zeq(1 — cos(wot))

Exercice 10 : Bille sur une tige en rotation

1. C’est un mouvement plan a vitesse de rotation constante, on va donc choisir les polaires
de centre O.

2. Dans le plan horizontal, la masse est soumise a deux forces : la force de rappel élastique
F. = —k(r — ly)i,, et la réaction de la tige R = Riiy (elle est normale a la tige car il n’y a pas de
frottements). On va appliquer le principe fondamental de la dynamique en projection selon i,.
L’accélération selon @, vaut a, = i — r6? = ¥ — rw?. Ainsi :

m(i —rw?) = —k(r — lo)
. k 2\ klo
T+ (E—w )r— -

Si % > w?, on a un oscillateur harmonique. Si % < w?, on aune divergence.
k 2 _ |k _ Kl
3. On suppose ;- > w=. On pose wy =4/~ —w?, et reg = mu?g

74 wgr = w%req

La solution de l’équation homogeéne associée est r(t) = Acos(wpt) + Bsin(wpt), et la solution
particuliere vaut r, = r.,. On a donc

r(t) = rp(t) +rp = Acos(wot) + Bsin(wot) + 7eq
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O Physicité L’oscillateur harmonique (corrections)

A=(lo —Teq)
Bwo = Vo
Finalement :
vy .
r(t) = (lo — req) cos(wot) + o sin(wot) + 7eq
0
On suppose £ < w? On pose L =/w? — £ ety = “0772 On a alors :
I ro
i R
Pour résoudre ’équation homogene associée, on introduit les fonctions cosinus et sinus
T —x T _ %
hyperbolique. cosh(z) = % et sinh(z) = %. Tout ce qu’il faut savoir c’est que
t t .
sinh’(x) = cosh(x) et cosh’(z) = sinh(z). On a donc r,(t) = Acosh (—) + Bsinh (—) La solution
T T

particuliere est r, = 9. On a donc :

r(t) = rp(t) + rp = Acosh (z) + Bsinh (;) + 7o

\]

T(t = 0) = l()
’f“(t = 0) =10
A =(lo — o)
B

T W

Donc :

t t

r(t) = (lo — ro) cosh <f) + vo7 sinh <7> + 70
T T

Cette solution diverge grossierement, ce qui n’est évidemment pas réaliste : si 'on tend le

ressort, au bout d’'un moment on sort du domaine de linéarité et il empéche r de dépasser

une certaine valeur.

Exercice 11 : Ressort et pince

Cet exercice est une illustration éclatante du fait que la force, et donc 'accélération n’a
aucune raison d’étre continue. Par contre la position l’est! Avant que la pince ne s’ouvre, 2 est
en équilibre entre le poids et la force de rappel élastique. Donc le ressort exerce sur lui une
force mg (en projection sur la verticale ascendante). Par principe des actions réciproques, il
exerce une force —myg sur le corps 1. La position est continue, donc le ressort est tendu de la
méme maniere immédiatement apreés que la pince se soit ouverte qu’immeédiatement avant.
Puisque la force exercée par le ressort dépend uniquement de sa longueur, il exerce juste apres
Uouverture la méme force, +mg sur le corps 2 et —mg sur le corps 1. L’accélération du corps 1
vaut donc a; = —g — g = —2¢, de norme 2g, et 'accélération du corps 2 vaut ays = +g — g = 0.

Réponse 3
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O Physicité L’oscillateur harmonique (corrections)

Exercice 12 : Oscillateurs harmoniques couplés

1.

| | |

0/ l N T
I xI9

Pour atteindre l’équilibre, puisque c’est possible, il faut que tous les oscillateurs soient a leur
longueur a vide. Donc z1¢q = ly et zoeq = 2lp.

2. On écrit le PFD appliqué a M; :
miél = —k‘($1 — lo) + k/(l‘z — X1 — lo)
De méme le PFD appliqué a M, donne :

mxo = +k((3lo — {L'Q) — l()) — k/(.%'g — I — lo)

| k
On peut faire apparaitre wg =/ — :

m
/

.. 2

= — —lo)+—(xo — 21 —1

1 wp (71 o)+m($2 r1 —lo)
/

D) :—w(z)(xz — 210)—#%(%1 — X9 + lo)

3. On remarque, qu’aux constantes pres (qui ne changent rien a la méthode de résolution
d’une équation différentielle), le couplage entre x; et x5 est symétrique. On fait donc la somme
et la différence. Soient S =z + a9 et D = 25 — 771 ;

S’ = —w%(azl + 9 — 3l0) = —w%S + 3W(2)l0

. K 2K
D= *wg(l‘g —x1 — 2l +l0) + E(xl — X9+ X1 — T2 +2l0) = —<w(2) +

e [k + 2K
On définit w; = i ,on a alors :
m

D = —w?D + Wil

)(D*lo)

m

S’ = —w(2)5’+3w(2)l0
D :—w%D—i— w%lo

La solution générale de ces équations est :

S(t) = Acos(wot)+ B sin(wot)+3ly
D(t) =A' cos(wit)+B'sin(wit)+ Iy

4, S(t = O) = A+ 3ly = 3lp + 2a, A = 2a, S(t = 0) = Bwy =0. S(t) = QCLCOS(OJot) + 3lp.
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O Physicité L’oscillateur harmonique (corrections)

Dit=0)=A+1lg=1lyp, A =0, D(t =0) = B'w; =0, B'=0. D(t) = l.

x1(t) :S(t);D(t) = acos(wot) + lo
xo(t) :S(t);D(t) =a cos(wot) + 2o

Y4

il (t), xI9 (t)

Cela correspond a une solution ou le mouvement des deux corps est le méme, on peut
donc parler de mode symétrique.

5.5(t=0)=A+3lp=3lp, A=0, S(t =0) = Bwy =0, B=0. S(t) = 3o
D(it=0)=A+1y=1y—2a, A’ = —2a. D(t =0) = B'wy; =0, B' =0, D(t) = —2a cos(wit) + lo.

x1(t) :S@);D(t) = acos(wit) + Iy
xa(t) :S(t)—;D(t) =—acos(wit) + 2y

LN
N N

x1(t), zo(t)

w1 > wq car le ressort de couplage rapproche les deux masses quand elles s’éloignent, donc
diminue la période, donc augmente la pulsation. Il s’agit d’un mode antisymétrique car le
mouvement des deux corps est 'opposé 'un de l'autre.

6.5(t=0)=A+3lg=3lp+a, A=a. S(t=0) = Buwy =0, B=0. S(t) = acos(wot) + 3lo
Dit=0)=A+1lg=1ly—a, A = —a. D(t =0) = B'w; =0, B' = 0. D(t) = —acos(wit) + Iy

x1(¢) —S@);D(t) = %cos(wot) + gcos(wlt) + 1o
xa(t) :S(t)—gD(t) :g cos(wot) — %COS(OJlt) + 2l

cos(wot) + cos(wit) = 2 cos (%t) cos (%t)
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cos(wot) — cos(wit) = 2sin (%t) sin (%t) Donc :

x1(t) :S(t);D(t) = acos <w1 ;w0t> cos <w1 ;w0t> + 1o

xo(t) :S(t)—gD(t) =asin (wl —;—wo t) sin (%t) + 2l

w1 + wo [k + 2K [k / 2K k'
~ . Et - == — —_— = < 1 _— 1) = —_
2 K<k wo w1 o m m wo + k k' <k wo k

Chaque z;(t) est un produit de deux fonctions périodiques : une rapide, de pulsation wy
/

. k
grande, et une lente, de pulsation wop- On a donc des battements : une enveloppe lentement

variable et une oscillation rapide.

-
oo

X (t), xI9 (t)

. K R . .
La fréquence des battements est wo alors méme que dans le produit de fonctions

/

SNPAT WQk . . T .
peériodiques, on a un cos (7?)’ car cette oscillation lente correspond a l’enveloppe du signal,
/

donc on est visuellement sensible a ‘cos (%?>
On a donc un transfert d’énergie périodique d’un oscillateur a l'autre, par Uoscillateur de

couplage.

Exercice 13 : Battements

En utilisant la partie 4.1 du cours, on sait que la fréquence des battements est w = w; — wy,
avec w; la pulsation du mode antisymétrique, et wy la pulsation du mode symétrique, c’est-
a-dire des oscillateurs découplés. Les battements sont le produit d’une oscillation rapide et
d’une enveloppe lente. Donc la fréquence des battements doit étre faible (devant wy). Cela
élimine d’emblée les réponses 3 et 4. On connalt wy, il suffit de calculer w;. Si on appelle
x; écart de loscillateur i a sa position d’équilibre. On cherche a connaitre la pulsation du
mode antisymétrique, c’est-a-dire celui ou x1(t) = —z2(t). On applique le PFD a loscillateur
de gauche. On n’écrira pas les longueurs a vide puisqu’elles n’interviennent pas dans les
pulsations. La force de rappel élastique exercée sur la masse de gauche vaut F' = F, + F; =

k/
, de pulsation on.

—kxy — K (1 — x9) = —(k + 2k')z1 Donc la pulsation du mode antisymétrique vaut
k+ 2K
w1 =
m

Il ne reste plus qu’a faire le DL de w; — wy

/ K Ik Kok
=w — = 1+2——1 — = —4/—
W= Wi e ( + k ) m k<k kN m
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Donc la fréquence vaut

Réponse 1

Exercice 14 : Pendules couplés

IL N’y a besoin de faire aucun calcul pour cet exercice : on sait que les pulsations des modes
propres tendent vers la pulsation d’un oscillateur découplé quand le couplage tend vers 0, et

la pulstion propre d’un pendule simple de longueur h est \/g La seule expression qui tende

vers cette caleur quand K tend vers O est la réponse 2 :

g 2K
h + m
Pour des raisons pédagogiques, je vais démontrer cette formule, mais dans le cadre d’un QCM,

ce n’est pas du tout ce qui est demandé.

On fera approximation des petits angles, sans cela ce n’est de toute fagon pas un oscillateur
harmonique.

m

— >

hoy lo="h h0s

Le mode propre de plus haute fréquence est le mode antisymétrique. On impose donc
0y = —0;. La longueur du ressort est h(f2 — 6; + 1). Donc la force sur la masse du pendule 2, en
projection selon up, vaut :

F=P-ig,—Kh(fo—0, +1—1)

La projection du poids selon wy, est simplement le calcul déja fait sur le pendule simple aux
petits angles, elle vaut donc —mgfs. On a donc :

F = —mgby — 2Khfy = —(mg + 2K h)0;

L’accélération selon iy, vaut ap = (2h92 + hég). On obtient, en écrivant le principe fondamental
de la dynamique :
. IK
0y + (g+—)92:0
h m
La pulsation de ce mode est donc :

Réponse 2
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Exercice 15 : Ressorts et rotation

Plus w est grand, plus le bloc ira vers de grands r (pensez a ce que vous ressentez lorsqu’une
voiture empreinte un virage). Donc la réponse doit étre croissante de w, ce qui élimine 2 et 4.
Ensuite on peut se dire que dans les équations, on a un ressort a gauche de raideur k et un
ressort a droite de raideur 2k, ce qui va donner —k(r + cste) + 2k(cste — r) = —3kr + cste, ce
qui fait apparaitre un 3k. On s’attend donc a la réponse 4. En toute honnéteté, si vous avez la
possibilité de faire un raisonnement aussi court, vous ne devriez par chercher a aller plus loin.
On va ici faire la démonstration complete par pur intérét pédagogique.

On se place en polaires dans le plan perpendiculaire a (Oz). On fait le bilan des forces
agissant sur le bloc : il y a le poids et la réaction du support, qui sont normaux a l’axe (Or) (si
on suppose qu’il n’y a pas de frottements), donc n’interviennent pas dans l’équilibre selon cet
axe. Il y a la force de rappel élastique du premier ressort :

—

Fopp = —k(r — 1),

La force de rappel élastique du deuxieme ressort :

—

Py = —2k((31 — ) — 20)(—i1,) = —2k(r — 1)@,

Et Uaccélération en polaires, selon u, a r constant vaut :

ar = —1rh% = —rw?

On applique le PFD en projection selon i, :
—mrw? = —3kr + 3kl

(3k — mw?)r = 3kl
3kl
Ay —

Réponse 4

Exercice 16 : Ressort et mouvement relatif

Comme on ’a vu dans le cours (page 13), la longueur a ’équilibre d’un ressort suspendant
une masse m est [ = Iy + 2. La seule réponse qui correspond a cela a t = 0 (la position étant
continue) est la réponse 2. Mais on peut faire encore plus simple : les réponses 1 et 3 sont
inhomogenes (k/mg = (kl/mg) x 1/l est homogene a linverse d’une longueur), et il est clair qu’a
t =0, quand le ressort est encore attaché en haut, la longueur du ressort est plus longue que
lop parce que la gravité tire dessus. C’est donc la réponse 2. Par pur intérét pédagogique, on
va faire la démonstration de la formule obtenue, mais qu’on soit bien clair, vous ne devez
pas faire ca pendant le QCM. Si vous ne trouvez pas de fagon astucieuse de résoudre une
question et que la méthode exacte n’est pas trop longue, vous pouvez faire le raisonnement
complet. Mais si c’est long, il vaut mieux mettre un des résultats qui semble pouvoir marcher
(homogene et qui a les bonnes monotonies par rapport aux parametre pertinents du probleme)
et passer a la suite.

12/49
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Appelons z;(t) la position de la masse du haut, et z,(t) de la masse du bas. [(t) = z3(t) — 21 (¢).
On oriente l’axe (Oz) vers le bas. Et on écrit ’équilibre mécanique de la masse 2, les forces s’y
compensent at =0, mg— k(z2(t =0) — z1(t =0) — lp) =0,

22(75:())—21@:0):l(t:O):l(H_%

Et la vitesse est continue, donc [(t = 0) = 0 On écrit le PFD a la masse 1:
mél =mg + k(ZQ — 21 — l())

mZe = mg — k(za — 21 — lp)

. k 2k
(=2~ 31 =g— —(z0—21—lg) —g— —(22— 21 —lo) = —— (I — |
Z—% =g m(22 z1—1lo) —g m(22 21 — o) m( 0)
2
On pose w = —k
m

Z'+ wzl = LUQZO
On résout l’équation homogéne associée : I}, + w?lj, = 0, I,(t) = Acos(wt) + Bsin(wt).
On trouve une solution particuliere, de la méme forme que le second membre, donc
constante, on trouve [, = .

1(t) = lp(t) + 1, = Acos(wt) + Bsin(wt) + Iy

On trouve les constantes avec les conditions initiales :

Ity =10+ % cos(wt)

Réponse 2

Exercice 17 : Oscillateur a deux ressorts

Il faut que, quand k; et ky tendent vers 0, on tende vers la pulsation propre de l'autre

oscillateur ( % pour k1 — 0, et %1 pour kgﬁ). Cela élimine 1 et 3. 2 fait intervenir les
longueurs a vide dans la pulsation, ce qui n’est pas possible : en effet il faudrait qu’elles
interviennent en produit devant le z, mais dans la force d’un ressort, elles n’interviennent que
comme des constantes, pas en produit devant la position. C’est donc la réponse 4. On va, pour
des raisons pédagogiques, faire la démonstration de la formule obtenue.

On fait le bilan des forces exercées sur le point M. Il y a le poids, qui est normal a 'axe
(Ozx), et la réaction du support, également normale a 'axe (Ozx) car on suppose qu’il n’y a pas
de frottements. Il y a ensuite la force de rappel élastique exercée par le ressort 1:

—

Feon = —ki(z — lo1)uy
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O Physicité L’oscillateur harmonique (corrections)

Ily a enfin la force de rappel élastique exercée par le ressort 2 :
Fliy = —ko((00" — ) — lop)(—ile) = —ka(z + log — 00",
On applique le PFD en projection selon (Ox) :
mi = —ky(x — lp1) — ka(x + log — O0") = — (k1 + k2)z + k1lo1 — kaloz + ko OO’

On remarque donc que la pulsation d’oscillation vaut :

[k1+ ko
w =
m

Réponse 4

Probléme 1: excitation de monoxyde de carbone dans ’air ambiant

1. On applique le PFD a chacun des deux atomes :
mcic = Foc
moto = Foo = —Fooe
Par principe des actions réciproques. On a donc :

- mere + mor 1 = = -
o = ¢ 90 _ (Fo—c —Fosc) =0
mg + mo mgo + mo

Donc 7 est constant.

Le référentiel dans lequel r¢ est immobile est donc galiléen puiqu’il a été obtenu a partir
d’une translation rectiligne uniforme depuis un référentiel galiléen.

2. On réutilise les résultats du PFD :

s I = I =
r=rc—"To= micFO—@ + mioFO—%J

1 - mcmo - z, =
= = it = Fose
mo +mg

<!

1 1
me T mo
C’est U'écriture du PFD a une particule de masse u de position 7 et subissant la force Fooc.

3. Au voisinage de la position d’équilibre r.,, on peut faire le DL a l'ordre 2 de ’énergie
potentielle :

au 1d*U
|7'*T'€j‘<<’f'eq U(’r’eq) * %(7‘ - Teq)(T‘ B re(l) * 5@(7’ - TQQ)(T - req)Q

Or r¢, est une position d’équilibre, donc un minimum de l’énergie potentielle, donc %(r =

Teq) = 0 et ‘ff{(r =Teq) =k >0.0n aalors :

1
= Ulr = Zk(r — 2
Ir—rogl<req (r Teq) + 9 (r Teq)

C’est l’énergie potentielle d’un ressort de raideur k et de longueur a vide [y = r¢,. S’il N’y a
aucune rotation, la particule fictive est soumise a un oscillateur harmonique, donc oscille

autour de r¢, a la pulsation wy = \/% (puisque cette particule fictive est de masse pu).
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4.0n a:
_ _mgmo _ (M(C)/NA)(M(O)/Na) 1 M(C)M(O)
mo +me  (M(O)/Na) + (M(C)/Na)  NaM(0)+M(C)

Il faut bien faire attention, les masses molaires sont données en grammes par moles, mais
Lunité Sl est le kilogramme par mole.

=1.14 x 10~ *°kg

5. Pour déterminer l’énergie cinétique, on détermine d’abord la vitesse :

v(t) = &(t) = —woxy, sin(wot)

1 1
E. = 5,&1)2 = 5#“355%1 sin®(wot)

Et w = — donc k = pw?. On en déduit 'énergie potentielle élastique :
I

1 1
E,= 5]{:32 = 5;1&;3:1;31 cos?(wot)

Par conséquent, puisque E,, = E. + E,, et que cos? (wot) + sin?(wpt) = 1, on en déduit que :

1 1
E, = iungfn(SmQ(wot) + cos?(wot)) = §,uw§x

2
m

6. La longueur d’onde 4.664um appartient au domaine infrarouge.

7. On utilise la relation entre les niveaux d’énergie :

L o

AE =F — Ey= —
! 0 2 2 A

8. Par ailleurs on a
Cc = fo)\

fo = ; — 6.43 x 103 H 2

k
w0:27rf0:\/;

k=4m?uf2 =1.86 x 103N m™!

9. On peut écrire :

Ce qui donne :

10. F2 posséde une liaison simple, 0%, N? une liaison triple. On constate que plus la valeur
de la constante de raideur est élevée, plus la liaison est multiple. En effet, plus la raideur est
grande, plus la liaison est forte et dure a casser (demande plus d’énergie pour la rompre).

11. En égalant Uexpression classique et ’expression quantique pour le niveaun =1 :

1 3th
ST = =

2

3h
=4/ —=28.29
o\ g b

L’élongation est inférieure a 1/10 de la longueur de la liaison C-0, ce qui est cohérent avec
Lapproximation |r — reg| < req.
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Exercice 18 : Ressort massif sur une sphére

La clé est le choix du systéme de coordonnées. On est sur une sphere, donc le mieux est
de choisir les coordonnées sphériques d’axe (Oz). Puisque le ressort est a ’horizontale, on est
a ¢ fixé, en plus d’étre a r fixé. On peut donc repérer la hauteur du ressort uniquement par
'angle 6. L’énergie potentielle du systeme est ’énergie potentielle de pesanteur plus ’énergie
potentielle élastique. On va donc calculer ces deux énergies et trouver 'extremum. On verra
ensuite s’il est stable.

Pour calculer ces deux énergies, il faut calculer la hauteur de l’élastique et sa longueur en
fonction de 6.

1
Donc E,, = MgRcos(0). Et Epq = 5i<;(27rR sin(f) — lp)%.

E, = MgRcos(6) + %k(%rR sin(f) — ly)?

On dérive I’énergie potentielle pour trouver les positions d’équilibre et déterminer leur stabilité :

dE
d—ep = 27 Rk cos(0)(2rRsin(0) — ly) — M gRsin(0)

— 21 Rk cos(0) (%R sin(0) — I — é”—i tan(@))
T

2 2 : lo Mg
=47“R kcos(@)(sm(&) — (m + Py tan(@)))

0 est 'angle des sphériques, donc varie entre 0 et . Pour qu’il y ait une position d’équilibre, il
faut que 'un des deux membres du produit s’annule. Or on ne peut pas trouver analytiquement
les zéros de la fonction de droite. On fera donc une résolution graphique. Et si vous étes arrivés
la et que vous avez tenté une résolution graphique, c’est tres trés bien. Toute la discussion
qui suit est longue et compliquée, et la correction officielle donnée par U'’X fait comme si
la question de la stabilité ne se posait pas, ce qui pourrait presque amener a penser que
ceux qui ont écrit la correction n’ont simplement pas pensé a ca. Le coeur du probléeme est
’établissement de l’équation transcendantale.
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On évacue déja le cas limite M/ = 0. La dérivée de ’énergie potentielle devient :

dEp - 2 2 . lO
w0 4m°R k:cos(@)(sm(&) 27TR)

On trace cette fonction d’abord dans le cas [y < 27R.

0.4 |
0.2 | /\
01 U
—0.2 |
—0.4 |

La force est opposée de la dérivée ’énergie potentielle, un point d’équilibre stable est
tel que la force soit décroissante, donc on veut un point d’annulation ou cette fonction soit
croissante de 6. 0, et A3 sont stables, et 6, est instable. On peut donc trés bien le comprendre
qualitativement : [y < 27 R, donc il existe un # entre 0 et g tel que la longueur de l’élastique
pour ce # vaille [p. Cela minimise donc l’énergie potentielle élastique. Par symétrie, = — 6
convient également (puisqu’on suppose que le ressort est sans masse, le haut et le bas de la
sphére sont équivalents. Et sur la sphere, la longueur de ’élastique est maximale au niveau
de l’équateur, donc en g C’est donc un maximum de l’énergie potentielle, ce qui en fait une
position d’équilibre instable.

On trace ensuite cette fonction dans le cas [y > 27R :

1.5 %

On remarque qu’il n’y a qu’une seule position d’équillibre, § = g, et qu’elle est stable.

Cela s’explique encore une fois trés bien qualitativement, le rayon étant trop petit, toutes les
longueurs possibles pour l’élastique sont plus petites que sa longueur a vide, la plus grande
longueur de ’élastique minimise donc son énergie potentielle, et la plus grande longueur

possible pour élastique est a l’équateur, en 6 = g Cependant, cette position n’est pas
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physiquement réalisable car elle brise la condition de contact. Cela sera discuté un peu plus
bas.

On suppose désormais M > 0.

On veut trouver les annulations de la fonction

@ . 2 152 . _ lO Mg
= A7°R kcos(@)(sm(@) (Tﬂ'R + Py tan(&)))

et, puisque la force est opposé de la dérivée de ’énergie potentielle, et qu’un point
d’équilibre stable est un point d’annulation de la force tel que la force y soit localement
décroissante, on cherche un point d’annulation de cette fonction ou elle soit localement
croissante.

Cette fonction est un produit de deux fonctions. On évacue déja la position 6 = g qui
annule le cosinus. Puisque M # 0, on a :

: lo Mg _ Mg
COS(Q)(Sln(G) - (27rR + TRk tan(@))) et I RE cos(0) tan(#)
Mg . My
= —————sin(f ——— <0
e vy P v T

Donc — n’est pas une position d’équilibre. On a donc uniquement a s’intéresser aux annulations
de la fonction :

e lo Mg
f(0) =sin(f) — (27TR + Py tan(@))
On voit que si QZ—OR est suffisamment grand, le terme de droite sera toujours au-dessus du
™

sinus, et il n’y aura pas de solution pour 6 < g On trace donc sin(#) en bleu et 2§r—°R %tam(@)

en rouge pour un [y suffisamment petit :

1.2 %

0.8
0.6 t
0.4 |

0.2 |

5
S
>
[N}
RS
S
w

Pour 61, on remarque que la pente du sinus est plus grande que la pente du terme de droite,
f est donc localement croissante, f/(f;) > 0. On peut donc calculer :

d*E,
do? lo=e,

Donc #; est une position d’équilibre stable.

= 412 R%E(f'(601) cos(61) — f(01)sin(8y)) = 4m?R%*kf'(61) cos(f1) > 0
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Pour 6, puisque la pente de sinus est plus faible que la pente de la fonction de droite dans
f, f est localemet décroissante en 6s, f'(62) < 0. En fait le méme calcul que pour 6, :

d2Ep’
df? 10=0,
Donc fy est une position d’équilibre instable.

= 412 R%*k f'(02) cos(2) < 0

Enfin, pour 63, on remarque que la pente de sinus est plus petite que la pente de la fonction
de droite, donc f/(03) < 0. Mais puisque 03 € } g;w[, cos(#3) < 0 Donc :

dQEI,’
dh? lo=o,
Donc 63 est une position d’équilibre stable.

= 412 Rk f(03) cos(f3) > 0

Analysons un peu ces résultats. Il semble logique que 6, soit stable, il ’agit d’une position
proche de la longueur a vide du ressort, mais un peu plus bas a cause de la gravité. C’est le
prolongement continu de #; dans le cas ou M > 0. On peut comprendre que 65 soit instable : le
ressort est a un point de compensation des forces gravitationnelles et élastiques, mais c’est
un point ou la longueur du ressort est maximale, le ressort est trop tendu, il va donc "sauter"
a la moindre perturbation.

Vient ensuite la discussion plus délicate de 3. Mathématiquement, on a prouvé que c’était
une position d’équilibre stable. Cependant on peut se demander comment il est possible
gu’une position soit stable alors qu’elle est en bas de la sphéere, le ressort ne devrait-il pas
tomber? Et bien si, absolument, seulement notre modele qui décrit ’'énergie potentielle du
systeme ne décrit pas la condition grace a laquelle le ressort tient sur la sphére. En effet,
comme vous le verrez en mécanique, il y a contact tant que la réaction du support est positive
selon la normale a la surface : ici, il faut que ﬁﬂr > 0. Et la force R ne travaille pas, donc n’est
pas prise en compte dans notre modele énergétique. Et pour que la position f3 soit atteinte, on
voit que le poids tire vers le bas, que la tension de rappel élastique tire dans le plan horizontal,
ce qui impose la réaction de la sphere a tirer vers le haut, donc cela implique R-4, <0.Cest la
condition de non-contact, cela veut donc dire que ’élastique rompt le contact avec la sphere.
Donc, 63 est bien un minimum de ’énergie potentielle, mais des aspects non-énergétiques de
la mécanique rendent cette position impossible.

Puisque P est selon i, vers le bas, et que la tension du ressort est selon i,, par principe
fondamental de la statique, R a une composante non nulle positive selon .. Or elle est
colinéaire a i, parce qu’on suppose qu’il n’y a pas de frottements. Cela fait qu’elle est
nécessairement dans l'autre sens que ,. Ce qui impose R-i, <O0.

Donc A3 n’est pas une position accessible. Regardons maintenant quelques cas limites.

kR , . .
Quand M <« —, la tangente est de plus en plus écrasée, et ne prend des valeurs importantes
g
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que quand elle diverge, donc proche de g Donc 6, — R g Par ailleurs, comme tangente
M< —
g

s’écrase, les valeurs de 6, et 6, sont a peu de choses prés dictées par l’équation sin(f) = 0

s
On se rapproche donc continlment du cas M = 0, ce qui explique a nouveau linstabilité de 6,
et la stabilité énergétique de 6, et 65.

1.2 %

0.8 1
0.6 |
0.4+

0.2+

. . l
Regardons maintenant ce qu’il se passe quand [y augmente. ﬁ est la valeur en 0 du
i

membre de droite dans f, donc si [y grandit, il n’y aura plus de solution entre 0 et g (on se

restreint a cet intervalle puisqu’on a dit que les solutions plus grandes que 7 n’ont pas de
réalité physique) :

1.2 5

0.8 1
0.6 |
0.4 |

0.2 |

o[ ¥

Les deux solutions d’équilibre se rapprochent quand [y augmente, puis deviennent égales,
puis disparaissent. Quand il n’y a qu’une solution, les deux courbes sont tangentes. Leurs
dérivées sont donc égales. On a alors 2 équations, qui nous permettent de prédire la valeur
critique de [y a partir de laquelle une solution d’équilibre (stable) existe :

f(8) =0
£(0)
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Il se trouve qu’on peut résoudre explicitement f/(§) = 0!

Mg 1

f(0) = cos() - 42 Rk cos?(x) =0

Mg
3(0) —
cos’(0) = Trag,
Et 0 € [0, 7], donc on peut utiliser arcos sans peur :

Mg >1/3)

0= arcos(( 1z

On réinjecte dans l’équation f(6) = 0 et on obtient pour I. la longueur critique :

e Mg
2rR  Am2Rk

le = 27rR<sin (arcos((4ﬁék> 1/3>) — —4%}%]{: tan (arcos((4ﬁék) 1/3))>

Pour [y < l. il y a deux positions d’équilibre, dont une stable, et pour [y > I, il n’y a pas de
position d’équilibre. On peut simplifier 'expression de [. avec les formules trigonométriques
V1—a2?

X

le = 2”R(1 B (4%1%k)2/3) \/1 ; (4%1{]21@)2/3 - 2”R<1 a <4gzgzk>2/3>3/2

(On les obtient en posant § = arcos(z) dans cos?(6) + sin?(9) = 1). Cela nous donne explicite-
ment les dépendances de la longueur a vide critique. On remarque que [. < 27 R, c’est-a-dire
que la gravité réduit la longueur a vide maximale permettant d’atteindre ’équilibre. Cela peut
se comprendre : si on est en présence de gravité, la longueur a vide 27R, qui ne peut étre
atteinte qu’a ’équateur, est instable (a ’équateur, le poids tire vers le bas et rien ne le contre).
La gravité rend donc instable des longueurs proches de l’équateur, qui, en abscence de gravité,
permettraient d’atteindre ’équilibre.

sin () tan(f) = 0

suivantes : sin(arcos(z)) = V1 — 22 et tan(arcos(z)) =

Regardons enfin ce qui se passe quand [y est petit. On voit graphiquement qu’on fait
descendre la courbe rouge, ce qui fait progressivement tendre 6, la seule position d’équilibre
stable, vers 0.

C’est un bel exo.

Exercice 19 : Quasi-ressort

Cf. cours pages 11-12.

Exercice 20 : Pendule simple

1. On va utiliser les coordonnées polaires de centre 0. On fait le bilan des forces s’appliquant
am:
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Ily a la tension de la corde : T = —Td,. On ne peut pas connaltre l’expression générale de
cette force, on va donc devoir projeter le PFD sur l’axe orthogonal a T' pour éviter ce probleme,
c’est-a-dire p.

ILy a le poids : P- iy = —mgsin(f)

L’accélération selon 4y vaut : ) ) .
ag :2T9+T9:l0

On applique le PFD a m en projection selon iy :
mlf = —mgsin(6)

6 = —% sin ()

2. On cherche les 6., tels que sin(f.,) = 0, c’est-a-dire 6., =0 et O, = 7.

3. sin est croissante autour de 0, donc _9 sin(f) est décroissante autour de 0, donc 6, =0

l
est une position d’équilibre stable. sin est décroissante au voisinage de 7, donc —% sin(f) est

croissante autour de w, donc 6., = 7 est une position d’équilibre instable.

4. On suppose |[f| < 1. On rappelle le DL a lordre 1 de sin au voisinage de O : sin(x) \CE|?<1 x
Donc : ) g p
0 = -7 sin(6) \9\?@ —79
i+9%9 =0

l

On a donc un oscillateur harmonique de pulsation propre w = ﬂ

Exercice 21: Formule de Borda

1. Cf. exercice 20 : )
9+%amm:0

2. Cf. exercice 20 : On a un oscillateur harmonique de pulsation wy = \/E et de période

l
2
TQZIZQTF £
wo g

22/49



O Physicité L’oscillateur harmonique (corrections)

3. On a maintenant ’équation approchée :

On réinjecte 0(t) = 0y cos(wt) dans cette équation :
93
—w?6y cos(wt) = —w? (00 cos(wt) — EO cos3(wt)>
On utilise ensuite la formule trigonométrique donnée :

3
—w?6y cos(wt) = —w? (90 cos(wt) — %(3 cos(wt) + cos(3wt))>

3 203
—w?0y cos(wt) = —w? (90 - %0) + WSZO cos(3wt)
On identifie donc : 5
—w290 = —wg (90 — 70)
8
02
2 2, Y
“ _“’0< 8)
Et on a une période de :
2t 2w 1 62\ —1/2 62
T:—:—7:T<1——0) - T(l i)
w wo 0 0 8 |60|<1 o\t 16

-3

C’est la formule de Borda. L’approximation d’oscillateur harmonique est tres bonne car le
terme correctif est non seulement en 63, donc d’ordre 2, mais en plus il y a un facteur % qui
réduit grandement linfluence du terme correctif. Méme si on prend 6y = 2rad ~ 115°, qui n’est
pas un petit angle, Uerreur relative n’est que de 10%. On est donc tres proche de ’harmonicité
(la non dépendance de la période en les conditions intiales).

4. On trace en rouge ’énergie potentielle parabolisée, et en bleu ’énergie potentielle de
pesanteur réelle :

0

On remarque que la pente de ’énergie potentielle réelle est plus faible que la pente de
’énergie potentielle parabolisée, donc la force de rappel réelle est moins forte que la force
de rappel linéaire, donc le systéme est moins poussé a vite revenir a la position d’équilibre,
donc T est plus grand que Ty. Et puisque la pente de [’énergie potentielle réelle diminue en
valeur absolue quand 6y, augmente, plus 6y augmente, plus la force de rappel au niveau de
0y est faible, donc plus le systéme prend du temps a revenir a sa position d’équilibre. C’est
pourquoi T est croissante de 6.
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Exercice 22 : Pendule accéléré

On veut pouvoir calculer 'accélération du point M. On a:

— = —
OM =00 +0'M
Donc ’accélération du point M vaut :

ot = Qg + 6Polaires centre O’
On fait le bilan des forces qui s’appliquent sur le pendule.

Ily a la tension du fil, T = —Td,. On ne peut pas connalitre 'expression générale de cette
force, il va donc falloir projeter le PFD sur l'orthogonal a T, c’est-a-dire .

On pourrait la refaire, mais la projection du poids selon iy est exactement la méme pour le
pendule simple non accéléré (cf.exercice 20), on a donc P - iy = —mgsin(0).

On a projeté toutes les forces, mais pour pouvoir écrire le PFD il faut également projeter

ail, dans la base polaire (pour pouvoir écrire la partie accélération du PFD). Sur le schéma on
Voit aii, - g = acos(h).

On écrit ensuite l'accélération dans la base polaire selon iy, sachant que [ est constant :
ag =20+ 10 =10
On écrit le PFD en projection selon iy :

m(a cos(f) + 10) = —mgsin(h)

0 = —% sin(f) — %cos(ﬁ)

La position d’équilibre vérifie
sin(feq) = - cos(0eq)
g

. T . .
Et cos(f,) n’est pas nul car cosinus ne s’annule qu’en -, et en ce point, sinus n’est pas nul. On
peut donc diviser par cos(f.,) sans risquer de perdre une position d’équilibre.

tan(feg) = ——
g
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feq = — arctan (2)
g

Si a =0, on retrouve bien 6., = 0. On voit que si a > 0, la position d’équilibre est décalée vers la
gauche, ce qui correspond bien a ce a quoi on s’attend. On va maintenant calculer la pulsation
des petites oscillations. On suppose § = 6., + ¢, avec |¢| < 1.

coS8(Bey +€) = c08(Bey) — sin(bey)e
(Ocq )|E|<<1 S(0cq) in(feq)

in(fe, + = sin(feq) + cos(fe
sin(feq + €) ot sin(feq) + cos(feq)e

On réinjecte le tout dans l’équation, et on ne s’embéte pas a calculer le terme constant,
puisqu’il correspond a l’équilibre donc s’annule :

- 9 @ __08(0eq) __c08(0eq) (@
e cos(feq)e + i sin(feq)e = ] (g —atan(be,)) = l <g + ; )5

Et 6., est une arctangente donc est dans [-7/2,7/2], donc cos(f.,) > 0. Donc la position
d’équilibre est stable, et la pulsation des petites oscillations vaut :

o = (cos(l€eq) (g N (;2))1/2

En terminale, on peut s’arréter la. Je vais juste vous montrer une petite astuce pour se
débarasser du cos(f.,) et obtenir une expression plus jolie et lisible :

cos®(arctan(z)) + sin?(arctan(z)) = 1

1
1+ tan® (arct N
4 tan (arC an(x)) COSQ(arCtan(x))
1
1+2% =
T = o (arctan())
1

cos(arctan(z)) = ———=
V14 a2

Car, comme on l'a déja dit, cos(arctan(z)) > 0. Si on reprend notre formule pour la pulsation
propre du pendule accéléré :

B /g2 + a2\ 1/2
w0 ( I )
On retrouve bien la pulsation propre du pendule simple dans le cas a = 0.

Exercice 23 : Bille sur un anneau en rotation

1. La bille est astreinte a se déplacer sur un cercle de centre O, les coordonnées les plus
adaptées sont donc les polaires de centre O.
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2. On va appliquer le PFD. On fait le bilan des forces qui s’appliquent au systeme :

AR

Il y a la réaction de l’anneau, qui est normale a ’anneau car on ne considére pas les
frottements, T'= —T4,. On ne peut pas connaitre ’expression générale de cette force, il va
donc falloir projeter le PFD sur ’axe orthogonal a T, pour éviter ce probleme. C’est-a-dire
selon .

Fie

ILy a la force d’inertie d’entrainement, Fi, - iy = ‘ cos() = mQ2Rsin(6) cos(h).

Et enfin, le poids, P. tlg = —mgsin(6).
L’accélération en polaire selon @y a r fixé vaut ag = 270 + 6 = R. On applique le PFD :
mRO = —mgsin(0) + mQ>Rsin(0) cos(6)
0 = —% sin(6) + Q2 sin(f) cos(h)
3. Les positions d’équilibre sont les solutions de ’équation :

—% sin(8) 4+ Q2 sin(#) cos(6) = 0

sin(6) (QQ cos(f) — %) =0
Donc on a By =0 et Oepp = . Si Q% < %, il N’y a pas d’autre positon d’équilibre. On définit donc
/ AT 0?2
Q. = % Si 2 > ., on a deux autres positions d’équilibre : 0.+ = iarcos(Q—g). Cela nous
permet d’établir le graphique suivant, des positions d’équilibre en fonction de Q :
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NE

R

4. Si Q2 > Q, la stabilité des positions f.,+ a €té montrée dans le cours aux pages 8 et 9. Il
est clair que 6., = 7 est toujours instable, on va donc s’intéresser a ., = 0. On va faire un DL
au voisinage de 0. On suppose que |#| < 1. On a donc :

0 = —02sin(0) + Q% sin(6) cos(6) ‘le . —020+ Q%0 x 1= —(Q — 2°)0
<

Cette position est donc stable pour 2 < €, et instable pour Q > Q.. On rapporte le tout sur le
graphique de la question précédente :
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T —=
stable
g e
stable instable
0. L
_% . e e T T———
stable

Il y a bifurcation car la position d’équilibre stable 6.,; = 0 devient instable et se sépare en
deux positions d’équilibre stables, 'une positive, 'autre négative.

Exercice 24 : Energie, force, équilibre et stabilité

Comme on l’a dit dans le cours, une position d’équilibre est un point d’annulation de la
force (x1) et un extremum de Uénergie potentielle (z4). Il faut donc avoir : ;1 = x4. Réponse 2.

Exercice 25 : Energie et stabilité

On remarque qu’il y a deux extrema de l’énergie potentielle, c’est-a-dire deux positions
d’équilibre : » = 0, qui est un minimum de U, donc une position d’équilibre stable, et un certain
r > 0, qui est un maximum de U, donc une position d’équilibre instable. La seule affirmation
vraie est donc qu’il y a une position d’équilibre instable non nulle, c’est-a-dire la Réponse 4.

Exercice 26 : Force centrale

1. La force est a symétrie sphérique et le mouvement se fait dans un plan, on choisit donc
les polaires de centre O.

2. On écrit le PFD appliqué a la masse m en polaires :

. k
m (i — r6?) =——
,

m(2r0 +rf) = 0

On cherche une orbite circulaire, c’est-a-dire » = rg. On simplifie donc les équations :
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—mr092 :_ﬁn
To
mroé = 0

Donc 6 est constant, § = ;. On le réinjecte dans la premiére équation :

k
n
mr(

7"0«98 =

Sl 7o et 6, vérifient cette équation, le mouvement est circulaire.

3. On réécrit le PFD dans ce cas :
k

mrn
210 +rf = 0

P —rf? =—

De la deuxiéme équation on déduit, grace a la formule donnée, que

1d, P
;%(7’ 6)—2T0+T0—0

Donc 726 = r%éo. Ce qui nous permet de faire disparaitre 6 en 'exprimant en fonction de r :
2
. TO .
9 = ﬁeo

On réinjecte cette expression dans la premiére équation du PFD :

2 2
.. rs - k
P — r(—g90> =—
r mrn
4
. TOéQ N k?
r— by = —
r mrh

On utilise ensuite ’écriture r =g + or :

bio—T0__go_ Kk __
(ro+0r)3 % m(rog+ or)"
. 0r\ =3 -9 k or\—n
gt —ro (1 75) 4 = g (1+3)

On fait ensuite les DL en utilisant f—g < let(l+az)” = 1 + ax, et on ne calcule pas les
x
termes constants, ils s’annulent puisqu’ils correpondent au mouvement circulaire, donc sont
égaux :
. 9 k
OF + 3050r = n———=0r
m

n+1
To

o7 + (363 — n )5r:o

n+1
mro
On utilise la relation trouvée a la question précédente :

k

n+1
mro

s
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Ce qui donne :

67 4 (302 — n2)or =0
6f + (3 —n)B20r =0
4. Si n < 3, Uorbite circulaire est stable. Si n > 3, Uorbite circulaire est instable. Pour n = 3,

Uordre 1 ne permet pas de conclure. Il faudrait faire une étude aux ordres plus élevés, ce que
vous ne pouvez pas faire avec uniquement les DL a U'ordre 1.

5. Les questions intermédiaires précédentes nous donnent la marche a suivre, il suffit de
répliquer la méthode. On suppose que le mouvement est circulaire de rayon ry et on écrit le
PFD dans ce cas :

Donc 6 = f,. On obtient alors la condition :

. k
rof3 = ) exp(—arp)
0

On suppose que l'on a légerement perturbé Uorbite circulaire, on pose donc r = ry + dr avec
i—g < 1. Le PFD selon iy donne, comme tout a ’heure :

d 2'

Donc %6 = 736y, on exprime alors ¢ en fonction de r :

2

. rs .
6=-260
r2 0
On le réinjecte dans le PFD selon 4, :
TS 5o
P —r—0i = ——— exp(—ar
rd 0 mr2 xp(—ar)
4
. TO A0 k
P — =05 = ——— exp(—ar
P30 mr2 xp(—ar)

On fait ensuite le DL de tous les termes en r au voisinage de rg :

4
Top2 _ "o___p2
370 (rg+6r)37°

: Sy -3
= 7“098 (1 + 7704)
— cste — 36207

On ne calcule pas la constante car on sait qu’elle va s’annuler puisqu’on est au voisinage
de l’équilibre. On fait le DL de l'autre terme :

— exp(—ar) =

W exp(—a(rg + o))
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k or\ —2
- (1 + 7”0) e " exp(—adr)

or

N mire_‘"o <1 — 2—)(1 — adr)

— 2
or<ro, 0 To

a

k 2
=cste + —5e < —a— —)57“
mrg 0

k 2
= cste — —26*“’"0 (a + —)5r
mr§ 0

: 2
— cste — rof? (a + —)67“
0]

En utilisant la relation qui caractérise l'orbite circulaire. On réinjecte le tout :
i + 30201 = +02(2 + arg)or
6i + (1 — arg)f2or =0

Donc lorbite est stable si et seulement si rg < %

Exercice 27 : Palet flottant

On repére le palet par la position de sa base, qu’on repére par sa coordonée z, dont on met
Uorigine a au niveau de la surface de l'eau.

On fait le bilan des forces s’appliquant sur le cube : il y a le poids, qui s’écrit P - @, = —myg.
ILy a les frottements fluides, que l'on va négliger, ce qui revient a supposer que la vitesse
n’est pas trop importante. On quantifiera cela plus tard.

Il y a enfin la poussée d’Archimede. On suppose que l'amplitude du mouvement est
suffisamment petite pour que le bloc ne soit jamais sous ’eau, ce qui fait qu’une hauteur —z
du bloc est sous le niveau de l’eau, ni ne quitte 'eau compléetement. La poussée d’Archiméde
est une force qui s’exerce a ’équilibre. On suppose donc que le mouvement est suffisamment
lent pour que tout moment soit un état d’équilibre, ce qui permet d’écrire qu’a tout moment,
le systeme est soumis a une force opposée au poids de fluide déplacé. Donc :

MA@ = peau(—2) X d’g

On applique donc le PFD en projection selon i, :
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pa’i = —pa’g — zpeaua’y
54 Peau gz — g
P a

On pose donc wy = ‘/peaug et 2z = —a P onaalors:
p a Peau

Z+W§Z = Zeq

C’est un oscillateur harmonique. Le mouvement est donc sinusoidal de pulsation wy. Le
mouvement est de la forme :

2(t) = Acos(wot + @) + zeq

On veut d’abord vérifier ’hypothéese que le bloc ne plonge pas sous l’eau et qu’il ne saute
pas au-dessus du niveau de la mer. Il faut pour cela que :

|A] 4+ zeg <0

Al < —2eg = a2

eau

et que :

_|A‘ + Zeq = —a

]A\gzeq—f—a:a(l— P )

Peau
Il suffit de calculer A en fonction des conditions initiales :

Acos(p) =20 — 2eq
—Awp sin(p) = Vo

2
A? cos2(g0) + A? sin2(g0) = (29 — zeq)2 + (Z—Z)

A? = (20 — 2eq)* + (@Y

wo

Al = \/(zo — Zeg)? + (Z‘(’))z
\/(zo—zeq)2—l-<zz)2<amin( P ,(1— P >>

Peau Pean
On veut ensuite vérifier ’hypothese de négligeabilité des frottements. On imagine bien (si
vous avez déja vu une bouée flotter sur 'eau) que le mouvement est relativement lent, donc
que les frottements sont linéaires en 7, on utilise donc 'expression de la force de Stokes :

FStokes = _67”76”7

On applique le PFD avec cette force :

5+ 6mnaz + wiz = Zeq

On veut la mettre sous forme canonique, on a donc :
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wo
6mna = —
Q

wo 1 Peau 9
Q = = —
6mna  6mna p a

L’amortissement est négligeable si le facteur de qualité est grand devant 1:

1 Peau 9 > 1
6mna p a
n < a=3/2 /gpe[;w

On veut ensuite vérifier que 'on peut supposer que chaque instant est un instant d’équilibre
(pour pouvoir appliquer Uexpression de la poussée d’Archimede). On a négligé la viscosité,
donc le mouvement de l'eau est di uniquement a la gravité. On va donc fabriquer un temps
typique de retour a l'équilibre. Il est lié & la gravité, donc on utilise g. [g] = L.T~2. Il faut donc
se débarasser de la longueur. Et une longueur typique du probléme est a. On pose donc

Il faut que le temps de retour a l’équilibre soit tres faible devant le temps typique du
mouvement :

1
TL —

wo
a a
Ny
g Peau 9
V Peau < \//3

Peau K P

C’est donc nécessairement une mauvaise approximation, tant que le bloc flotte. On peut
s’y attendre, car si vous voyez une bouée flotter a la surface de l'eau, elle crée des vagues
qui sont visibles et de fréquence la pulsation propre de l'oscillation, 'eau n’est donc pas a
’équilibre, puisqu’elle est sérieusement impactée par le mouvement de la bouée.

Exercice 28 : Grains de sable dans un cylindre

On va corriger la version aidée, ce qui corrigera la version brutale.

1. On a affaire a un cylindre, on choisit donc les cylindriques d’axe l’axe de révolution du
cylindre.

2. On va séparer ce qui se passe dans le plan (i,,iy) de ce qui se passe selon ..
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On va d’abord appliquer le PFD en projection selon .. On fait le bilan des forces s’appliquant
sur le point en mouvement.

Ily a la réaction du support, qui est normale a la surface car on néglige les frottements,
N = —Ni,.

ILy a également le poids P = —mgsin(a)i. + (...)@. + (...)d. On s’intéressera a ce qui se
passe dans le plan (i,,iy) apres. Il reste a calculer l’accélération selon .

a, =z
On applique le PFD selon i, :
mzZ = —mgsin(a)
Z = —gsin(a)
C’est exactement ’équation de la chute libre, mais avec un poids de norme mgsin(«).

On regarde ensuite ce qui se passe dans le plan (#,, ). On voit sur le schéma plus haut
que le poids dans le plan en question est de norme mg cos(a).

On remarque qu’on a exactement affaire a un pendule simple de poids mgcos(«) et de
longueur R. Voir la correction de U’exercice 20 pour les projections et l’accélération.
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Le PFD en projection selon iy donne alors :
——, cos(a) sin(6)
R

3. Puisque la position initiale est proche de A et la vitesse initiale est nulle (c’est le sens
de "on pose", sous-entendu on ne leur a pas donné de vitesse initiale), on peut simplifier
’équations sur 6 pour des petites oscillations :

0= —% cos(a)f

Pour les détails de la résolution, voir le cours page 11. La solution est donc :

0(t) = Oy cos(wot)
Avec wy = %cos(a). Pour l’équation selon ., on résout comme pour la chute libre :

Z = —gsin(a)

On primitive :
La vitesse initiale étant nulle :

On primitive :

At=0,z=L,donc z, = L.

1
z(t) = _ith sin(a) + L

4. Les particules de sable suivent toutes les équations horaires trouvées a la question
précédente, simplement toutes avec 6, différent. On va faire ’hypothese que les particules de
sable ne s’entrechoquent pas. C’est une hypothése trés fausse, mais puisque les particules
oscillent toutes a la méme pulsation, ca ne va pas beaucoup changer le résultat : les chocs
ne changeront pas la moyenne de l'oscillation. C’est également une hypothése nécessaire a
faire si on veut pouvoir traiter l’exercice, donc on la fait (c’est une bonne legon a retenir, les
hypotheses permettant de résoudre le probleme analytiguement sont toujours a faire dans un
exercice).

Grace au résultat de la question précédente, on sait que chaque grain de sable arrive tout
en bas du cylindre en un temps :

1
0= —5972 sin(a) + L

2L
gsin(a)

On veut gqu’a linstant 7, # = 0 (c’est l’angle du point B) :
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cos(wor) =0

Donc :

us
w07‘25—|—n7r

Avec n € N. Cela se réécrit :

Pas mal, non?

Exercice 29 : L’oscillateur harmonique amorti

Le nombre N d’oscillations visibles est environ le nombre d’oscillations qu’il y a sur le
graphique. La fréquence des oscillations est f = 200Hz, et on note T la période. Le nombre
d’oscillations sur le graphique est :

NT = At
N:%:Atxf:E)OO

Et le cours nous dit que Q ~ N = 500, c’est donc la réponse 4.

Probléme 2 : ondes sonores dans un cristal monoatomique
1. (i) Dans le modéle microscopique il y a un atome de masse m tous les a, donc la masse

ey m
par unité de longueur vaut —.
a

Dans le modele macroscopique, la masse de la barre vaut SLu, donc la masse par unité de
longueur vaut uSL/L = uS.

La masse par unité de longueur doit étre la méme dans les deux modeles, donc :

(ii) a est la distance entre atomes au repos, donc correspond a la position d’équilibre de
linteraction entre deux atomes. On fait donc le DL de l’énergie potentielle d’interaction :

dE 1d*E
E — E p - P 2
p(a + U) p(a) + dx ac:au 2 dl‘2 r=a
. " ’ s .l dﬂb d’E
Puisque a est une position d’équilibre, donc —= =0et K =3 > 0. Donc la force
X lx=a r=a

exercée par linteraction entre deux atomes vaut —Ku. Par principe des actions réciproques,
F = Ku. C’est une force élastique.

(iii) Le module d’Young est une force par unité de surface, c’est donc une pression. Elle
s’exprime donc en Pa. On a fait ’hypothese que l'allongement était uniforme, donc :

N
L+5L:Za+u
=1

L+0L=N(a+u)
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0L =Nu
(5L_Nu U

L  Na a
On réinjecte le résultat de la question (ii) dans la relation définissant le module d’Young :

F oL
==
S L
Ku o

S a
On remplace S grace au résultat de la question (i) :

pakK FE

m a
K _E
m  pa
Donc K = —n; =25 x 10°Nm™!. C’est 50 fois plus que la raideur typique d’un ressort en
wa
TP, c’est donc trés tres raide, tres dur a allonger, ce qui semble logique, il n’est pas facile
d’allonger de l’acier.

K
Cela donne une pulsation y/— = 1.7 x 10 Hz.
m

2. (i) On va appliquer le PFD en une dimension. On fait le bilan des forces s’appliquant sur
la particule n.

ILy a la force de rappel du ressort n —1: F,_1y/, = K(a— (a4 up —up-1)) = —K(up — tup—1)
ILy a la force de rappel du ressort n+1: Fi,11yn = —K(a — (a + upt1 — un)) = —K(un — Uny1)-

On applique le PFD :

d*u
m 7 2" = —K(2up — Upt1 — Up—1)
t
. . dzun 2 . . re s
(i) up(t) = ugsin(wt — kna), donc T tw sin(wt — kna). Si on réinjecte le tout dans
’équation précédente :
—mugw? sin(wt — kna) = — K (ug sin(wt — kna)—ug sin(wt — k(n + 1)a)+ug sin(wt — kna) —ug sin(wt — k(n — 1)a))

On utilise la premiére formule de trigonométrie donnée par l’énoncé :

w? sin(wt — kna) = %(2 sin (k(n + 1)2a — kna) cos (wt—k(n—i—%)a) +2sin (k:(n — 1)2a — kna) cos (wt—k(n—%)))

w?sin(wt — kna) = 2% sin (l%a) (cos (wt - k(n + %)a) — cos (wt - k(n - %)))
Puis on utilise la deuxieme formule de trigo donnée par l’énoncé :

K k
w?sin(wt — kna) = —4— sin(wt + kna) sin ( - Ea)
m
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w2 = 4E sin (@)
m 2

Donc si sin (%“) < 0il n’y a pas de solution, et si sin (’“—f) >0,0na:

(iii)

k +— sin (—a> est 27/a périodique, donc le mouvement des atomes est inchangé par k —

+2p7/a. C’est simplement un effet de Uinvariance du probléme par translation de a. Les grandes
longueurs d’ondes correspondent au petits k. Cela correspond au régime k < 1/a. On fait alors
le DL du sinus au voisinage de 0 :

| K K K
w=2 —sin(@) = 2 —@:ka —
m 2/ kaxl m 2 m

w_ K
E m

Cela correspond a un milieu non dispersif : la célérité, % ne dépend pas de la fréquence.

Si w > 24/ —, il est impossible d’avoir une onde progressive harmonique. Il y a donc de
m
’atténuation. On dit que l'onde est évanescente.

(iv) Si lon remplace une masse par m’ < m, comme elle a une tres faible inertie comparée
aux autres masses, elle oscille beaucoup plus que les autres masses. La masse m’ peut osciller
a des fréquences supérieures a la fréquence maximale du cristal (puique /K/m' > /K/m).
Mais ces modes ne peuvent pas se propager sans atténuation dans le reste du cristal (comme
on l’a vu a la question précédente).

Imaginons maintenant qu’une onde progressive harmonique de vecteur d’onde k traverse

le milieu. Elle excite les atomes a la fréquence 24/ — sin <?a> Elle veut exciter la masse m/’
m

a la frequence 24/ — sin <7a> qui est différente. On ne peut donc pas avoir de propagation
m
harmonique. Il y a donc réflexion et diffusion (atténuation).
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(v) Pour qu’une frégquence soit admissible, il faut qu’une onde progressive harmonique
a cette fréquence puisse se propager, donc sans atténuation. Dans un cristal avec deux
masses m et m’ trés différentes, qui ont deux fréquences propres trés différentes. Ce sont
des oscillateurs couplés, donc il y a deux modes fondamentaux :

— le mode symétrique, les masses m et m’ sont en phase, les ressorts sont donc peu
sollicités. Il est donc possible d’exciter ce mode a trés basse fréquence, puisque c’est
un mode ou linertie joue peu, ou les masses ont le temps de se déplacer ensemble de
maniére quasi-statique.

— Le mode antisymétrique, les masses m et m’ sont en opposition de phase, les ressorts
sont donc tres sollicités. Il faut donc une grande accélération pour aller avec ces grandes
forces : ce mode correspond donc a des hautes fréquences.

Si les masses m et m/ sont trés différentes, ces deux modes sont trés éloignés. Donc entre
ces deux modes, on peut trouver des fréquences n’étant pas assez faibles pour faire bouger
les masses en phase, et pas assez élevées pour faire bouger ces masses en opposition de
phase. Les différentes masses se génent donc dans leur mouvement (on n’est pas dans une
situation ou le mouvement de l'une aide le mouvement de l'autre comme dans les modes
symeétriques et antisymétriques), donc il y a de l'atténuation. Cela fait qu’il y a une bande de
fréquences interdite.

3 L’oscillateur harmonique partout ailleurs

Exercice 30 : Encore de l'optique

1.

On applique la loi de Snell-Descartes :
n(y + dy)sin(6(y + dy)) = n(y) sin(6(y))

d, .
@(n sin(f)) =0
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O Physicité

n(y)sin(0(y)) = ngsin (6y) = no

T
2

Car lincidence est normale, donc 6y =

2. On fait un schéma :

On a donc sin(f) = dz = !
Vda? + dy? \/ dy ) 2
1+ (%)
1
n(y) x — no
L+ (2
) _ g @)2
no i
dy\2  /n(y)\2
<%) _( no ) -1
3.0Onadonc:
k 2
L ()

On reconnalit, a un signe pres, le théoréeme de ’énergie mécanique pour un ressort. On

dérive donc :
k k
2= )= ) -
no no
k
(- k)-
no no
k2 k
" _ M
y (no) Y 1o
On pose a = —. On résout l’équation différentielle homogene associée :
no
yi — o’y =0

yn(x) = Acosh(ax) + Bsinh(ax)
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¢ —t t ot
Ou on a défini cosh(t) = % et sinh(f) = — ¢

le second membre étant constant, elle est constante.

. On cherche ensuite la solution particuliere,

1
%7—'a

Ona:
1
y(z) = yn(x) + yp = Acosh(ax) + Bsinh(ax) + —
«

On a y(0) = 0, et puisque lincidence est horizontale, y/'(0) = 0.

1

A+ —=0
o

Ba =0

Donc :

y(z) = é(l — cosh(ax))

Dans le sujet original, ils n’avaient pas pensé a dériver, ce qui fait qu’ils incitaient a faire

—k
un changement de variables 6 = no Y

, et donnaient la primitive de sec(f), avec qui vaut
ng

In(sec(f) + tan(f)), qu’il fallait ensuite inverser pour trouver y. Autrement dit, dériver quelque
chose qui ressemblait a de ’énergie nous a épargné beaucoup de souffrances.

4. On cherche la solution a l’équation :

y(70) = —vo

cosh(azg) =1+ ayo

1 1
xg = —argcosh(l + ayp) = — ln<ay0 + \/W)
(6% (6%

Exercice 31 : Principe d’un pH-métre

. , . ZeV . . ZeV, . .
1. On est a haute température si kej? <1l,ie.siT> ¢ % on regarde le DL de sinh en 0 a
B B
Uordre 1: . . ( )
el —e " 1+t—(1—t
inh(¢) = = =t
sinh(?) 2 <1 2

Donc, a haute température, ’équation différentielle devient :

d*V  Zeng ZeV(z)  Z*e*ng

dx? zevy € kT — kpTe
kB79<<1 0 B B 0

kT .
2. On pose d = FB-0 | a solution est de la forme :
Z2eZng

V(z) = Ae "%+ Be®/?

On obtient E = (M)ﬁm. Si B # 0, ’énergie électrostatique volumique diverge, ce
qui est absurde. Donc B = 0. On a la condition initiale V(0) = Vj, ce qui donne la solution :
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V(x) = Voe /"

3. Le milieu peut étre considéré comme infini si sa taille typique L est trés grande devant d.
Pour de l'acide chlorhydrique & C' = 0.1molL~!, on a une solution de H30" et Cl—, donc Z =1,
et ng = % = NAN/‘?/A = Naft = CN4 =6 x 10*m~3 (ne pas oublier de convertir les moles par
litre en moles par metres cubes), et on est a température ambiante, c’est-a-dire T'= 300K, ce

qui donne une distance typique de variation du potentiel :

d=1.5x10""m

Si la solution fait 100 mL, la distance typique dans cette solution est L = V/3 = 46cm. On a
bien L > d, lapproximation du milieu infini est tout a fait valable. Et on est tellement large
qu’on peut dire que pour des solutions usuelles de TP de chimie, cette approximation est
toujours valable.

Exercice 32 : De la thermodynamique ?! L’expérience de Riichardt

1. La section du piston est la méme a lintérieur et a Uextérieur, Py étant la pression
d’équilibre, en appliquant le principe fondamental de la statique au piston :

PyS — PyymS =0

POZPatm

2. On est donc dans les hypotheses de la loi de Laplace :
PV = RV,

pen(l)

Enz =0,V =1V, Donc V(z) =V + Sz. Donc
Sx\ 7
P=n (1 + —)
N7
On va applique le PFD au piston, en projection selon l’axe (Ozx). On fait le bilan des forces
s’appliquant sur le piston. Il y a le poids, mais peu importe son orientation, il ne rajoutera qu’un
terme constant dans l’équation, donc ne changera pas la pulsation. On peut donc supposer
que le poids est normal a 'axe (Ox). Il y a la réaction du support, mais comme on suppose qu’il
n’y a pas de frottements, elle est normale a ’axe (Oz). Les deux seules forces qui s’appliquent
sont la résultante des forces pressantes a gauche, de Uintérieur de ’enceinte, et a droite, donc

de atmosphere. Cela donne l’équation différentielle suivante :

mi = PS— PyS = RS ((1+ @)_7 1)
Vo
Le piston n’a été perturbé que "légerement", on peut donc imaginer que = < % Cela donne

’équation différentielle :

N PSS ~Sz vPyS?
i o= o2 (1 _1T 1) _ x
Sz/Vokl T
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vPyS?
mWo

On a donc un oscillateur harmonique de pulsation wy = . La mesure de la pulsation

des petites oscillations permet de remonter a 4.

Exercice 33 : De l’électrocinétique ?! L’autre exercice sur l’oscillateur harmonique amorti

On a le jeu d’équations différentielles :

d*qi d’q  Rdqr 1
e ae Lar et T
dt at> L dt LC
¢ d’qp Rdga 1
az a2 L dt LCPT
On remarque que le couplage entre ¢ et ¢» est symétrique. Il faut donc faire la somme
et la différence. On pose S = ¢1 + ¢ et D = ¢1 — ¢2. On fait la somme des deux équations

différentielles :

o S

On pose 7 = RC et S, = CE.

T T

On résout ’équation homogéne associée S + § = 0. Si(t) = Ae~*/7. On cherche ensuite une
solution particuliere, le second membre est constant, donc la solution particuliere doit étre
constante : S, = Sw. On a donc :

S(t) = Ae /™ + S
S(t=0)=A+Sx=2x % =5, A=0. Donc S(t) = CE.
On fait ensuite la différence des deux équations différentielles :

. R. 1 E

2D+ =D+ —D = —

+ L * LC L

. R . 1 E

D+ —-D+-—-—D=_—

* 2L + 2LC 2L

On pose wy = ﬁ, donc on pose D,, = CE. On cherche ensuite a mettre cette équation

sous forme canonique :

o 2L _2¢L
~ RVLC RVC

i>+—%§l>+—wgl)::wglkm

On doit savoir dans quel régime on se place. On calcule donc le facteur de qualité :
@ = 0.7 > 1/2. On est donc en régime pseudo-périodique. On pose 7’ = % et Q =wp,/1—

On a donc :

1
aQz:
On résout l’équation homogene associée :
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“o
Q

On a: Dy(t) = e t/7 (Acos(Qt) + Bsin(Qt)). Par ailleurs, on cherche une solution particuliére,
le second membre est constant, on cherche donc la solution constante, on trouve D, = D.

D+—=D+wiD=0

Doncon a:
D(t) = Dy(t) + D, = e~/ (A cos() + Bsin(Qt)) + Do

On trouve les constantes A et B a l'aide des conditions initiales :

Dt=0) =2+ Bo :%
= — Dy = —CE
(a7 =ale %)

La solution est donc :
D(t) = CE + e*t/f’< — CEcos(O) +

On a finalement :

5(t) +D(¢) —CFE + %e*t/T/ ( — CEcos(2t)) + ! (E - O,E) Sin(Qt>>>

a(t) = 2 Q\R T
q2(t) _5() 5 D) = % —t/7 ( — CEcos(2t)) + %(% - C?) Sln(Qt)))
q

q1 en bleu, ¢
Je pense que cela vous démontre bien que ¢a n’est pas d’un grand intérét. Les aspects

qualitatifs sont tout de méme importants.

Exercice 34 : De la mécanique quantique ? Le puits de potentiel infini

1. En dehors de [0, L], 'équation devient :
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h? d?p

2m dx?

La seule fagon que +oo x p(z) ne diverge pas est que ¢(z) = 0. C’est comme en mécanique

classique, il est impossible de passer une barriere de potentiel infinie. Pour 'annulation a

droite et a gauche, il faut la continuité : 227“5 peut éventuellement diverger en 0 et en L. Ce qui

fait que ‘;—‘af peut éventuellement étre discontinue en 0 et en L, ce qui fait que ¢ est dérivable a
gauche et a droite en 0 et en L, donc continue.

+ 00 X p(z) = Ep(x)

2. On a donc, pour z € [0, ] :

h? d?
Y _ R

2m dx? ()
d>p  2mE
ik —0
a2 TR ¥

\/2m|FE
Donc si £ <0, on a avec k = ZLH,

¢(x) = Acosh(kx) + Bsinh(kz)
Si E=0,
o(z)=Ax+ B
2mE
h b
p(x) = Acos(kzx) + Bsin(kz)

3. On suppose que E < 0. On a donc:

Si £ >0,0n a, avec k =

0(0)=A=0
(L) = Acosh(kL) + Bsinh(kL) = Bsinh(kl) =0
Donc B = 0 car sinh ne s’annule qu’en 0. Finalement, ¢(x) = 0, ce qui est impossible d’apres
’énoncé. On suppose que £ =0. On a donc :
p(0)=B=0
o(L)=AL+B=AL=0
Donc A =0, donc ¢(z) =0, ce qui est a nouveau impossible. Donc E > 0.

4. On a donc

o(x) = Acos(kz) + Bsin(kx)
Et ¢(0) = A = 0. Donc ¢(z) = Bsin(kz), donc nécessairement, B # 0. Et :

©(L) = Bsin(kL) =0

sin(kL) =0
kL = nrw
n € N*
vV2mE
5 L=nm

45/49



O Physicité L’oscillateur harmonique (corrections)

2mE L? 22
h2
h2r2n?
~ omI?
5. La question 1 nous dit qu’on a une onde aux extrémités fixes. L’énoncé nous dit qu’on
cherche une solution stationnaire, on a donc une onde stationnaire. Elle est fixée sur une
longueur L. Sa longueur d’onde )\, vérifie donc

Lo
2
2L
Ap = —
n
0 L ()/-\_/L 0/\/\L
n=1 n=2 n=3
Donc la quantité de mouvement p, vaut :
_h _ hn
Pn = Ao 2L
Donc ’énergie E vaut :
py kP R*(2n)*n? RPmn?
2m 8mL?  8mI?  2ml2

Attention, la formule E = % n’est vraie que pour des particules ultra-relativistes (pc > mc?).
Ici la "vitesse" de la particule n’est pas c.

Probléme 3 : Eau et objets

3.1 Une plaque positionnée verticalement

1. Par principe fondamental de la statique, les forces de pression sont 'opposée des forces
de tension de surface. Il suffit de calculer la résultante des forces de tension de surface.
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—

F. sur face

X1 €2
La composante horizontale de la force linéique appliquée sur le bloc d’eau a gauche vaut :

fi = =7 cos(B(a1)) = —ycos(0(a1)

Donc la composante horizontale de la force linéique a droite vaut donc :

fa = rycos(0(x2))

Donc :

—fo = fa+ f1 = v(cos(0(x2)) — cos(0(x1)))
2. On a donc, si on fixe x; et on prend = quelconque :

_%pg(zz — 2) = y(cos(8(x)) — cos(8(x1)))

1
5@,22 + cos(A(x)) = constante
5

On pose donc [ = ‘/l, et on a donc :
P9
1/2\2
- (—) + cos(f(x)) = constante

2\1
3. Il faut exprimer cos(f(z)) en fonction de z et de = :
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dz
dx
On a donc cos(f(x)) = de = ! L’hypothese |2/(z)| < 1 donne donc :
Vida? dy? T+ 2 (@) '
cos(0(z)) = (14 #(@)2) 12 = 1- 22
(@)« 2

L’équation de la question précédente devient alors :

1/72(x)\2 1
7( ( )) — —2/(z)? = constante
2\ 1 2

On reconnalt ’énergie mécanique d’un ressort, a un signe prés. On pense donc a dériver :

2 (x) — l% =0

La solution générale est de la forme :
2(z) = Ae®/! + Be= /!

A = 0 pour éviter la divergence. On a comme condition initiale 6y, que 'on peut relier a 2/(0)
. . . d
Reprenons le schéma fait plus haut : on lit tan(f) = & Z/(x). Donc :
X

2'(0) = —? = tan(6p)

2(z) = —ltan(fy)e /"

3.2 Interaction entre deux tiges

1. On a toujours :

Puisque le probleme possede une symétrie (parité par rapport a l’axe z), on va choisir

d’écrire la solution de la forme :
z(xz) = Acosh (%) + Bsinh <§>

Par symétrie, B = 0 (en effet, cosh est paire et sinh est impaire, pour que la solution soit
paire il faut donc qu’il n’y ait pas de terme en sinh). Ensuite, on regarde ce qui se passe en z, :

z(xq) = Acosh (%) = 2,

Za
cosh (%)
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Donc :

En particulier,en x =0 :

Préparation aux olympiades — version 2025-26 - contributeur : Mathurin Rouan
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