
Ces corrections sont très longues, il y a donc très probablement des erreurs. Si vous en
repérez, ou bien si vous ne comprenez simplement pas quelque chose, venez poser la question
sur le discord, si c’est une erreur je la rectifierai, et sinon quelqu’un vous expliquera gentiment,
et j’adapterai la correction pour que ça soit plus clair. En résumé, si vous ne comprenez pas
quelque chose, c’est de ma faute, pas de la vôtre.

1 Développements limités

Exercice 1 : Développements limités à l’ordre 1

1.
1

1 + x
=

x≪1
1− x

2. z = a+ ε
1

z
=

1

a+ ε
=

1

a

(
1 +

ε

a

)−1
=

ε≪a

1

a

(
1− ε

a

)
3. θ = θeq + ε

cos(θeq + ε) =
ε≪1

cos(θeq) + cos′(θeq)ε = cos(θeq)− sin(θeq)ε

4. x = 1 + ε
ex

2
= e(1+ε)2 =

ε≪1
e1+2ε = e× e2ε =

ε≪1
e× (1 + 2ε)

5. u = u0 + ε
eu0+ε = eu0eε =

ε≪1
eu0(1 + ε)

6.
1

(1 + x)3/2
= (1 + x)−3/2 =

x≪1

(
1− 3x

2

)
7. z = a+ ε

1

z4
=

1

(a+ ε)4
=

1

a4

(
1 +

ε

a

)−4
=

ε≪a

1

a4

(
1− 4ε

a

)
8.

1√
1 + x

= (1 + x)−1/2 =
x≪1

1− x

2

9. x = 2 + ε
√
1 + x =

√
1 + 2 + ε =

√
3
(
1 +

ε

3

)1/2
=

ε≪1

√
3
(
1 +

ε

6

)

Exercice 2 : Solution approchée

On peut donc supposer que x ≪ 1. Si on fait le DL à l’ordre 1, cos(x) =
x≪1

1, 1
1−x2 =

x≪1
1, et on

obtient x = k = 0.1.
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Si on va à l’ordre 2, on obtient :

k
1− x2

2

1− x2
= x

k − kx

2
= x(1− x2) = x− x3

On néglige le terme d’ordre 3 car il est négligeable devant les termes d’ordre 2.

kx2

2
+ x− k = 0

C’est une équation quadratique, que l’on sait résoudre :

x =
1

k
(−1±

√
1 + 2k2)

On choisit la solution en + car c’est la seule qui soit proche de 0.

x = −1 +
√

1 + 2k2 = 0.99

Il n’y a pas grand intérêt à aller à l’ordre 2. Numériquement, on trouve x = 0.97.

Exercice 3 : Pression dans une salle

1. h = 3m, T = 300K.

2. PV = nRT , donc [RT ] = (F.L−2)L3.N−1 = F.L.N−1, avec F l’homogénéité d’une force. Et
[mg] = F . Donc : [RT

Mg

]
=

F.L.N−1

F.N−1
= L

H = 8.6km.
P (z)− P0 = P0

(
e−

z
H − 1

)
=

z≪H
−P0

z

H

3.
|P (z)− P0|

P0
=

z

H
= 3.5× 10−4 = 0.03%

C’est donc une très bonne approximation.

Exercice 4 : Champ de gravité terrestre

cf. cours page 8.

Exercice 5 : Point de Lagrange

1. On a la relation :
0 = −GMS

d2
+

GMT

(D − d)2
+Ω2d

On réinjecte Ω2 = GMS
D3 :

0 = −GMS

d2
+

GMT

(D − d)2
+

GMS

D3
d

On divise par GMS :

0 = − 1

d2
+

α

(D − d)2
+

d

D3
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0 = −1 +
αx2

(1− x)2
+ x3

2. Si on pose ε = 1− x = 0.011 = 1.1× 10−2 ≪ 1, l’équation devient :

1− (1− ε)3 =
α(1− ε)2

ε2

La chose à voir est que α est très petit, en effet α = MT /MS = 3 × 10−6, donc un terme en
α
ε2

pourra être du même ordre de grandeur qu’un terme en ε. Regardons le terme de droite :
α(1−ε)2

ε2
=

ε≪1

α
ε2

− 2 α
ε2

× ε. Le terme α
ε2

× ε ≪ 2 α
ε2

car ε ≪ 1. Le terme de gauche se simplifie à l’aide

d’un DL : 1− (1− ε)3 =
ε≪1

3ε On obtient alors :

ε =
(α
3

)1/3
= 1.0× 10−2

On obtient donc une bonne approximation. L’intérêt de cette méthode n’est pas la valeur
numérique (on peut l’obtenir numériquement avec des méthodes informatiques) mais plutôt
que le DL nous a donné une expression théorique du paramètre recherché, on connaît donc
ses dépendances et sa monotonie par rapport aux différents paramètres.

2 L’oscillateur harmonique en mécanique

Exercice 6 : Le système masse-ressort

1. ẍ+ k
mx = 0 cf. cours page 13

On pose ω0 =
√

k
m . La solution est de la forme :

x(t) = A cos(ω0t) +B sin(ω0t){
x(t = 0) = 0

ẋ(t = 0) =v0{
A = 0

Bω0 =v0

x(t) =
v0
ω0

sin(ω0t)

2. z̈ + ω0z = g cf cours page 8. On résout d’abord l’équation homogène associée :

z̈ + ω0z = 0

Donc zh(t) = A cos(ω0t) + B sin(ω0t) Et la solution particulière est de la forme du second
membre, donc constante. On trouve zp =

mg
k . On a donc :

z(t) = zh(t) + zp = A cos(ω0t) +B sin(ω0t) +
mg

kz(t = 0) =z0 +
mg

k
ż(t = 0) = 0
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{
A =z0

Bω0 = 0

On a alors :

z(t) = z0 cos(ω0t) +
mg

k

3. On fait le bilan des forces s’appliquant sur le sytème : il y a la force de rappel élastique
F⃗el = −k(x − l0)u⃗x, la réaction du support R⃗ = Ru⃗y (orthogonale au plan car il n’y a pas de
frottements) et le poids P⃗ . Il suffit de projeter le poids sur l’axe (Ox).

P⃗

α π
2 − α

α

En appliquant les formules de trigonométrie dans le triangle du haut, on voit que P⃗ · u⃗x =
−mg sin(α). On vérifie la projection en regardant les cas limites : si α = 0, le poids n’a pas
de composante horizontale, et si α = π

2 , le poids est simplement −mg selon l’axe (Ox). On
applique donc le principe fondamental de la dynamique en projection selon u⃗x :

mẍ = −k(x− l0)−mg sin(α)

ẍ+
k

m
x =

k

m
l0 − g sin(α)

ẍ+ ω2
0x = ω2

0l0 − g sin(α)

La solution de l’équation homogène associée est xh(t) = A cos(ω0t) +B sin(ω0t). La solution
particulière est xp = l0 − g sin(α)

ω2
0

. Donc x(t) = A cos(ω0t) +B sin(ω0t) + l0 − g sin(α)
ω2
0

.{
x(t = 0) =l0

ẋ(t = 0) = 0A+ l0 −
g sin(α)

ω2
0

=l0

Bω0 = 0

Finalement :
x(t) =

g sin(α)

ω2
0

cos(ω0t) + l0 −
g sin(α)

ω2
0

Exercice 7 : Ressorts équivalents

1. La masse M est soumise aux forces des deux ressorts. On projette selon u⃗l :

F1 + F2 = −k1(l − l0)− k2(l − l0) = −(k1 + k2)(l − l0)

On remarque qu’il s’agit de l’expression de la force exercée par un ressort de longueur à vide l0
et de constante de raideur keq = k1+ k2. Par récurrence immédiate, pour n ressorts en parallèle,

keq =

n∑
i=1

ki
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2. On appelle A le point d’attache des deux ressorts. il est clair que la longueur à vide
équivalente pour les deux ressorts est la somme des longueurs à vide de chacun des ressorts :
l’équilibre glogal impose l’équilibre de chaque ressort. On applique le principe fondamental de
la dynamique projeté sur la verticale descendante au point A. Puisqu’il est de masse nulle, la
somme des forces qui s’exercent sur lui s’annule :

−k1(l1 − l01) + k2(l2 − l02) = 0

La masse M est soumise à la force de rappel du ressort 2 :

F = −k2(l2 − l02)

On cherche un expression de la forme :

F = −keq(l1 + l2 − l01 − l02)

k2(l2 − l02) = keq(l1 + l2 − l01 − l02) = keq(l1 − l01) + keq(l2 − l02) = keq
k2
k1

(l2 − l02) + keq(l2 − l02)

k2 = keq

(k2
k1

+ 1
)

1

keq
=

1

k1
+

1

k2

Par récurrence immédiate, pour n ressorts en série, la longueur à vide équivalente est
n∑

i=1

l0i,

et la raideur équivalent vérifie :
1

keq
=

n∑
i=0

1

ki

Exercice 8 : Élastique coupé en deux

Puisque c’est une boucle, on peut considérer qu’il est constitué de deux ressorts identiques
(un de chaque côté), chacun de raideur k0. Ils sont en parallèle, donc la raideur k de l’élastique
non coupé vaut : k = 2k0, donc k0 = k/2 = 5Nm−1. Une fois coupé, les deux branches se
retrouvent l’une derrière l’autre, donc en série. La constante de raideur équivalente vaut alors,
d’après l’exercice précédent : 1

keq
= 2

k0
, keq = k0/2 = 2.5Nm−1.

Réponse 3

Exercice 9 : Ressorts et gravité

1. On projette tout sur l’axe (Oz). La masse m est soumise à son poids P = −mg, la
force de rappel du ressort du bas, F1 = −k(z − l0) et la force de rappel du ressort du haut,
F2 = k((2L− z)− l0). On applique le principe fondamental de la dynamique à la masse m :

mz̈ = −k(z − l0)− k(z − 2L+ l0)−mg

z̈ +
2k

m
z =

k

m
(l0 − l0 + 2L)− g =

2k

m
L− g
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On pose ω0 =
√

2k
m :

z̈ + ω2
0z = ω2

0L− g

2. On résout pour z constant :
zeq = L− g

ω2
0

On remarque que plus l’intensité de la pesanteur est faible, plus l’équilibre se rapproche d’une
situation symétrique, et plus la raideur des ressorts augmente, et moins l’impact de la gravité
se fait ressentir sur l’équilibre, ce qui est attendu.

3.
z̈ + ω2

0z = zeq

4. On résout l’équation homogène associée z̈+ω2
0z = 0, zh(t) = A cos(ω0t)+B sin(ω0t). La solution

particulière est de la même forme que le second membre, c’est-à-dire constante, zp = zeq. On
a donc

z(t) = zh(t) + zp = A cos(ω0t) +B sin(ω0t) + zeq

On a les conditions initiales : {
z(t = 0) =0

ż(t = 0) =0{
A+ zeq =0

Bω0 =0

z(t) = zeq(1− cos(ω0t))

Exercice 10 : Bille sur une tige en rotation

1. C’est un mouvement plan à vitesse de rotation constante, on va donc choisir les polaires
de centre O.

2. Dans le plan horizontal, la masse est soumise à deux forces : la force de rappel élastique
Fel = −k(r − l0)u⃗r, et la réaction de la tige R⃗ = Ru⃗θ (elle est normale à la tige car il n’y a pas de
frottements). On va appliquer le principe fondamental de la dynamique en projection selon u⃗r.
L’accélération selon u⃗r vaut ar = r̈ − rθ̇2 = r̈ − rω2. Ainsi :

m(r̈ − rω2) = −k(r − l0)

r̈ +
( k

m
− ω2

)
r =

kl0
m

Si k
m > ω2, on a un oscillateur harmonique. Si k

m < ω2, on a une divergence.

3. On suppose k
m > ω2. On pose ω0 =

√
k
m − ω2, et req =

kl0
mω2

0

r̈ + ω2
0r = ω2

0req

La solution de l’équation homogène associée est rh(t) = A cos(ω0t) + B sin(ω0t), et la solution
particulière vaut rp = req. On a donc

r(t) = rh(t) + rp = A cos(ω0t) +B sin(ω0t) + req
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{
r(t = 0) = l0

ṙ(t = 0) =v0{
A =(l0 − req)

Bω0 = v0

Finalement :

r(t) = (l0 − req) cos(ω0t) +
v0
ω0

sin(ω0t) + req

On suppose k
m < ω2. On pose 1

τ =
√

ω2 − k
m , et r0 =

kl0τ2

m . On a alors :

r̈ − r

τ2
=

r0
τ2

Pour résoudre l’équation homogène associée, on introduit les fonctions cosinus et sinus

hyperbolique. cosh(x) =
ex + e−x

2
et sinh(x) =

ex − e−x

2
. Tout ce qu’il faut savoir c’est que

sinh′(x) = cosh(x) et cosh′(x) = sinh(x). On a donc rh(t) = A cosh
( t

τ

)
+ B sinh

( t

τ

)
. La solution

particulière est rp = r0. On a donc :

r(t) = rh(t) + rp = A cosh
( t

τ

)
+B sinh

( t

τ

)
+ r0{

r(t = 0) = l0

ṙ(t = 0) =v0 A =(l0 − r0)

B

τ
= v0

Donc :
r(t) = (l0 − r0) cosh

( t

τ

)
+ v0τ sinh

( t

τ

)
+ r0

Cette solution diverge grossièrement, ce qui n’est évidemment pas réaliste : si l’on tend le
ressort, au bout d’un moment on sort du domaine de linéarité et il empêche r de dépasser
une certaine valeur.

Exercice 11 : Ressort et pince

Cet exercice est une illustration éclatante du fait que la force, et donc l’accélération n’a
aucune raison d’être continue. Par contre la position l’est ! Avant que la pince ne s’ouvre, 2 est
en équilibre entre le poids et la force de rappel élastique. Donc le ressort exerce sur lui une
force mg (en projection sur la verticale ascendante). Par principe des actions réciproques, il
exerce une force −mg sur le corps 1. La position est continue, donc le ressort est tendu de la
même manière immédiatement après que la pince se soit ouverte qu’immédiatement avant.
Puisque la force exercée par le ressort dépend uniquement de sa longueur, il exerce juste après
l’ouverture la même force, +mg sur le corps 2 et −mg sur le corps 1. L’accélération du corps 1
vaut donc a1 = −g − g = −2g, de norme 2g, et l’accélération du corps 2 vaut a2 = +g − g = 0.

Réponse 3
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Exercice 12 : Oscillateurs harmoniques couplés

1.

m m

k k′ k

x1 x2

xO

Pour atteindre l’équilibre, puisque c’est possible, il faut que tous les oscillateurs soient à leur
longueur à vide. Donc x1eq = l0 et x2eq = 2l0.

2. On écrit le PFD appliqué à M1 :

mẍ1 = −k(x1 − l0) + k′(x2 − x1 − l0)

De même le PFD appliqué à M2 donne :

mẍ2 = +k((3l0 − x2)− l0)− k′(x2 − x1 − l0)

On peut faire apparaître ω0 =

√
k

m
:

ẍ1 = −ω2
0(x1 − l0)+

k′

m
(x2 − x1 − l0)

ẍ2 =−ω2
0(x2 − 2l0)+

k′

m
(x1 − x2 + l0)

3. On remarque, qu’aux constantes près (qui ne changent rien à la méthode de résolution
d’une équation différentielle), le couplage entre x1 et x2 est symétrique. On fait donc la somme
et la différence. Soient S = x1 + x2 et D = x2 − x1 ;

S̈ = −ω2
0(x1 + x2 − 3l0) = −ω2

0S + 3ω2
0l0

D̈ = −ω2
0(x2 − x1 − 2l0 + l0) +

k′

m
(x1 − x2 + x1 − x2 + 2l0) = −

(
ω2
0 +

2k′

m

)
(D − l0)

On définit ω1 =

√
k + 2k′

m
, on a alors :

D̈ = −ω2
1D + ω2

1l0

{
S̈ =−ω2

0S+3ω2
0l0

D̈ =−ω2
1D+ ω2

1l0

La solution générale de ces équations est :{
S(t) = A cos(ω0t)+ B sin(ω0t)+3l0

D(t) =A′ cos(ω1t)+B′ sin(ω1t)+ l0

4. S(t = 0) = A+ 3l0 = 3l0 + 2a, A = 2a, Ṡ(t = 0) = Bω0 = 0. S(t) = 2a cos(ω0t) + 3l0.
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D(t = 0) = A′ + l0 = l0, A′ = 0, Ḋ(t = 0) = B′ω1 = 0, B′ = 0. D(t) = l0.
x1(t) =

S(t)−D(t)

2
= a cos(ω0t) + l0

x2(t) =
S(t) +D(t)

2
=a cos(ω0t) + 2l0

t

x1(t), x2(t)

Cela correspond à une solution où le mouvement des deux corps est le même, on peut
donc parler de mode symétrique.

5. S(t = 0) = A+ 3l0 = 3l0, A = 0, Ṡ(t = 0) = Bω0 = 0, B = 0. S(t) = 3l0

D(t = 0) = A′ + l0 = l0 − 2a, A′ = −2a. Ḋ(t = 0) = B′ω1 = 0, B′ = 0, D(t) = −2a cos(ω1t) + l0.
x1(t) =

S(t)−D(t)

2
= a cos(ω1t) + l0

x2(t) =
S(t) +D(t)

2
=−a cos(ω1t) + 2l0

t

x1(t), x2(t)

ω1 > ω0 car le ressort de couplage rapproche les deux masses quand elles s’éloignent, donc
diminue la période, donc augmente la pulsation. Il s’agit d’un mode antisymétrique car le
mouvement des deux corps est l’opposé l’un de l’autre.

6. S(t = 0) = A+ 3l0 = 3l0 + a, A = a. Ṡ(t = 0) = Bω0 = 0, B = 0. S(t) = a cos(ω0t) + 3l0

D(t = 0) = A′ + l0 = l0 − a, A′ = −a. Ḋ(t = 0) = B′ω1 = 0, B′ = 0. D(t) = −a cos(ω1t) + l0
x1(t) =

S(t)−D(t)

2
=

a

2
cos(ω0t) +

a

2
cos(ω1t) + l0

x2(t) =
S(t) +D(t)

2
=
a

2
cos(ω0t)−

a

2
cos(ω1t) + 2l0

cos(ω0t) + cos(ω1t) = 2 cos
(
ω1+ω0

2 t
)
cos

(
ω1−ω0

2 t
)
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cos(ω0t)− cos(ω1t) = 2 sin
(
ω1+ω0

2 t
)
sin

(
ω1−ω0

2 t
)
. Donc :

x1(t) =
S(t)−D(t)

2
= a cos

(ω1 + ω0

2
t
)
cos

(ω1 − ω0

2
t
)
+ l0

x2(t) =
S(t) +D(t)

2
=a sin

(ω1 + ω0

2
t
)
sin

(ω1 − ω0

2
t
)
+ 2l0

ω1 + ω2

2
≈

k′≪k
ω0. Et ω1 − ω0 =

√
k + 2k′

m
−
√

k

m
= ω0

(√
1 +

2k′

k
− 1

)
=

k′≪k
ω0

k′

k
.

Chaque xi(t) est un produit de deux fonctions périodiques : une rapide, de pulsation ω0

grande, et une lente, de pulsation ω0
k′

k
. On a donc des battements : une enveloppe lentement

variable et une oscillation rapide.

t

x1(t), x2(t)

La fréquence des battements est ω0
k′

k
alors même que dans le produit de fonctions

périodiques, on a un cos
(ω0

2

k′

k

)
, car cette oscillation lente correspond à l’enveloppe du signal,

donc on est visuellement sensible à
∣∣∣ cos(ω0

2

k′

k

)∣∣∣, de pulsation ω0
k′

k
.

On a donc un transfert d’énergie périodique d’un oscillateur à l’autre, par l’oscillateur de
couplage.

Exercice 13 : Battements

En utilisant la partie 4.1 du cours, on sait que la fréquence des battements est ω = ω1 − ω0,
avec ω1 la pulsation du mode antisymétrique, et ω0 la pulsation du mode symétrique, c’est-
à-dire des oscillateurs découplés. Les battements sont le produit d’une oscillation rapide et
d’une enveloppe lente. Donc la fréquence des battements doit être faible (devant ω0). Cela
élimine d’emblée les réponses 3 et 4. On connaît ω0, il suffit de calculer ω1. Si on appelle
xi l’écart de l’oscillateur i à sa position d’équilibre. On cherche à connaître la pulsation du
mode antisymétrique, c’est-à-dire celui où x1(t) = −x2(t). On applique le PFD à l’oscillateur
de gauche. On n’écrira pas les longueurs à vide puisqu’elles n’interviennent pas dans les
pulsations. La force de rappel élastique exercée sur la masse de gauche vaut F = Fg + Fd =
−kx1 − k′(x1 − x2) = −(k + 2k′)x1 Donc la pulsation du mode antisymétrique vaut

ω1 =

√
k + 2k′

m

Il ne reste plus qu’à faire le DL de ω1 − ω0

ω = ω1 − ω0 =
(√

1 + 2
k′

k
− 1

)√ k

m
=

k′≪k

k′

k

√
k

m
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Donc la fréquence vaut

f =
ω

2π
=

1

2π

k′

k

√
k

m

Réponse 1

Exercice 14 : Pendules couplés

Il n’y a besoin de faire aucun calcul pour cet exercice : on sait que les pulsations des modes
propres tendent vers la pulsation d’un oscillateur découplé quand le couplage tend vers 0, et

la pulstion propre d’un pendule simple de longueur h est
√

g

h
. La seule expression qui tende

vers cette caleur quand K tend vers 0 est la réponse 2 :√
g

h
+

2K

m

Pour des raisons pédagogiques, je vais démontrer cette formule, mais dans le cadre d’un QCM,
ce n’est pas du tout ce qui est demandé.

On fera l’approximation des petits angles, sans cela ce n’est de toute façon pas un oscillateur
harmonique.

m

h
θ1

hθ1

m

h
θ2

hθ2l0 = h

Le mode propre de plus haute fréquence est le mode antisymétrique. On impose donc
θ2 = −θ1. La longueur du ressort est h(θ2 − θ1 + 1). Donc la force sur la masse du pendule 2, en
projection selon u⃗θ2 vaut :

F = P⃗ · u⃗θ2 −Kh(θ2 − θ1 + 1− 1)

La projection du poids selon u⃗θ2 est simplement le calcul déjà fait sur le pendule simple aux
petits angles, elle vaut donc −mgθ2. On a donc :

F = −mgθ2 − 2Khθ2 = −(mg + 2Kh)θ2

L’accélération selon u⃗θ2 vaut aθ = (2ḣθ̇2 + hθ̈2). On obtient, en écrivant le principe fondamental
de la dynamique :

θ̈2 +
(g
h
+

2K

m

)
θ2 = 0

La pulsation de ce mode est donc :

Ω =

√
g

h
+

2K

m

Réponse 2
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Exercice 15 : Ressorts et rotation

Plus ω est grand, plus le bloc ira vers de grands r (pensez à ce que vous ressentez lorsqu’une
voiture empreinte un virage). Donc la réponse doit être croissante de ω, ce qui élimine 2 et 4.
Ensuite on peut se dire que dans les équations, on a un ressort à gauche de raideur k et un
ressort à droite de raideur 2k, ce qui va donner −k(r + cste) + 2k(cste − r) = −3kr + cste, ce
qui fait apparaître un 3k. On s’attend donc à la réponse 4. En toute honnêteté, si vous avez la
possibilité de faire un raisonnement aussi court, vous ne devriez par chercher à aller plus loin.
On va ici faire la démonstration complète par pur intérêt pédagogique.

On se place en polaires dans le plan perpendiculaire à (Oz). On fait le bilan des forces
agissant sur le bloc : il y a le poids et la réaction du support, qui sont normaux à l’axe (Or) (si
on suppose qu’il n’y a pas de frottements), donc n’interviennent pas dans l’équilibre selon cet
axe. Il y a la force de rappel élastique du premier ressort :

F⃗el1 = −k(r − l)u⃗r

La force de rappel élastique du deuxième ressort :

F⃗el2 = −2k((3l − r)− 2l)(−u⃗r) = −2k(r − l)u⃗r

Et l’accélération en polaires, selon u⃗r à r constant vaut :

ar = −rθ̇2 = −rω2

On applique le PFD en projection selon u⃗r :

−mrω2 = −3kr + 3kl

(3k −mω2)r = 3kl

req =
3kl

3k −mω2

Réponse 4

Exercice 16 : Ressort et mouvement relatif

Comme on l’a vu dans le cours (page 13), la longueur à l’équilibre d’un ressort suspendant
une masse m est l = l0 +

mg
k . La seule réponse qui correspond à cela à t = 0 (la position étant

continue) est la réponse 2. Mais on peut faire encore plus simple : les réponses 1 et 3 sont
inhomogènes (k/mg = (kl/mg)× 1/l est homogène à l’inverse d’une longueur), et il est clair qu’à
t = 0, quand le ressort est encore attaché en haut, la longueur du ressort est plus longue que
l0 parce que la gravité tire dessus. C’est donc la réponse 2. Par pur intérêt pédagogique, on
va faire la démonstration de la formule obtenue, mais qu’on soit bien clair, vous ne devez
pas faire ça pendant le QCM. Si vous ne trouvez pas de façon astucieuse de résoudre une
question et que la méthode exacte n’est pas trop longue, vous pouvez faire le raisonnement
complet. Mais si c’est long, il vaut mieux mettre un des résultats qui semble pouvoir marcher
(homogène et qui a les bonnes monotonies par rapport aux paramètre pertinents du problème)
et passer à la suite.
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Appelons z1(t) la position de la masse du haut, et z2(t) de la masse du bas. l(t) = z2(t)− z1(t).
On oriente l’axe (Oz) vers le bas. Et on écrit l’équilibre mécanique de la masse 2, les forces s’y
compensent à t = 0−, mg − k(z2(t = 0)− z1(t = 0)− l0) = 0,

z2(t = 0)− z1(t = 0) = l(t = 0) = l0 +
mg

k

Et la vitesse est continue, donc l̇(t = 0) = 0 On écrit le PFD à la masse 1 :

mz̈1 = mg + k(z2 − z1 − l0)

mz̈2 = mg − k(z2 − z1 − l0)

l̈ = z̈2 − z̈1 = g − k

m
(z2 − z1 − l0)− g − k

m
(z2 − z1 − l0) = −2k

m
(l − l0)

On pose ω =

√
2k

m
l̈ + ω2l = ω2l0

On résout l’équation homogène associée : l̈h + ω2lh = 0, lh(t) = A cos(ωt) +B sin(ωt).

On trouve une solution particulière, de la même forme que le second membre, donc
constante, on trouve lp = l0.

l(t) = lh(t) + lp = A cos(ωt) +B sin(ωt) + l0

On trouve les constantes avec les conditions initiales :l(t = 0) =A+ l0 =
mg

k
+ l0

l̇(t = 0) = Bω = 0A =
mg

k
B = 0

l(t) = l0 +
mg

k
cos(ωt)

Réponse 2

Exercice 17 : Oscillateur à deux ressorts

Il faut que, quand k1 et k2 tendent vers 0, on tende vers la pulsation propre de l’autre
oscillateur (

√
k2
m pour k1 → 0, et

√
k1
m pour k2

−→
0 ). Cela élimine 1 et 3. 2 fait intervenir les

longueurs à vide dans la pulsation, ce qui n’est pas possible : en effet il faudrait qu’elles
interviennent en produit devant le x, mais dans la force d’un ressort, elles n’interviennent que
comme des constantes, pas en produit devant la position. C’est donc la réponse 4. On va, pour
des raisons pédagogiques, faire la démonstration de la formule obtenue.

On fait le bilan des forces exercées sur le point M . Il y a le poids, qui est normal à l’axe
(Ox), et la réaction du support, également normale à l’axe (Ox) car on suppose qu’il n’y a pas
de frottements. Il y a ensuite la force de rappel élastique exercée par le ressort 1 :

F⃗el1 = −k1(x− l01)u⃗x
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Il y a enfin la force de rappel élastique exercée par le ressort 2 :

F⃗el2 = −k2((OO′ − x)− l02)(−u⃗x) = −k2(x+ l02 −OO′)u⃗x

On applique le PFD en projection selon (Ox) :

mẍ = −k1(x− l01)− k2(x+ l02 −OO′) = −(k1 + k2)x+ k1l01 − k2l02 + k2OO′

On remarque donc que la pulsation d’oscillation vaut :

ω =

√
k1 + k2

m

Réponse 4

Problème 1 : excitation de monoxyde de carbone dans l’air ambiant

1. On applique le PFD à chacun des deux atomes :

mC̈⃗rC = F⃗O→C

mÖ⃗rO = F⃗C→O = −F⃗O→C

Par principe des actions réciproques. On a donc :

¨⃗rG =
mC̈⃗rC +mÖ⃗rO

mC +mO
=

1

mC +mO
(F⃗O→C − F⃗O→C) = 0⃗

Donc ˙⃗rG est constant.

Le référentiel dans lequel rG est immobile est donc galiléen puiqu’il a été obtenu à partir
d’une translation rectiligne uniforme depuis un référentiel galiléen.

2. On réutilise les résultats du PFD :

¨⃗r =¨⃗rC −¨⃗rO =
1

mC
F⃗O→C +

1

mO
F⃗O→C

1
1

mC
+ 1

mO

¨⃗r =
mCmO

mO +mC

¨⃗r = µ̈⃗r = F⃗O→C

C’est l’écriture du PFD à une particule de masse µ de position r⃗ et subissant la force F⃗O→C .

3. Au voisinage de la position d’équilibre req, on peut faire le DL à l’ordre 2 de l’énergie
potentielle :

U(r) =
|r−req|≪req

U(req) +
dU

dr
(r = req)(r − req) +

1

2

d2U

dr2
(r = req)(r − req)

2

Or req est une position d’équilibre, donc un minimum de l’énergie potentielle, donc dU
dr (r =

req) = 0 et d2U
dr2

(r = req) = k > 0. On a alors :

U(r) =
|r−req|≪req

U(r = req) +
1

2
k(r − req)

2

C’est l’énergie potentielle d’un ressort de raideur k et de longueur à vide l0 = req. S’il n’y a
aucune rotation, la particule fictive est soumise à un oscillateur harmonique, donc oscille
autour de req à la pulsation ω0 =

√
k
µ (puisque cette particule fictive est de masse µ).
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4. On a :

µ =
mCmO

mO +mC
=

(M(C)/NA)(M(O)/NA)

(M(O)/NA) + (M(C)/NA)
=

1

NA

M(C)M(O)

M(O) +M(C)
= 1.14× 10−26kg

Il faut bien faire attention, les masses molaires sont données en grammes par moles, mais
l’unité SI est le kilogramme par mole.

5. Pour déterminer l’énergie cinétique, on détermine d’abord la vitesse :

v(t) = ẋ(t) = −ω0xm sin(ω0t)

Ec =
1

2
µv2 =

1

2
µω2

0x
2
m sin2(ω0t)

Et ω2
0 =

k

µ
donc k = µω2

0 . On en déduit l’énergie potentielle élastique :

Ep =
1

2
kx2 =

1

2
µω2

0x
2
m cos2(ω0t)

Par conséquent, puisque Em = Ec + Ep, et que cos2(ω0t) + sin2(ω0t) = 1, on en déduit que :

Em =
1

2
µω2

0x
2
m(sin2(ω0t) + cos2(ω0t)) =

1

2
µω2

0x
2
m

6. La longueur d’onde 4.664µm appartient au domaine infrarouge.

7. On utilise la relation entre les niveaux d’énergie :

∆E = E1 − E0 =
hω0

2π

(
1 +

1

2
− 1

2

)
=

hω0

2π
=

hc

λ

8. Par ailleurs on a
c = f0λ

f0 =
c

λ
= 6.43× 1013Hz

9. On peut écrire :

ω0 = 2πf0 =

√
k

µ

Ce qui donne :
k = 4π2µf2

0 = 1.86× 103Nm−1

10. F2 possède une liaison simple, O2, N2 une liaison triple. On constate que plus la valeur
de la constante de raideur est élevée, plus la liaison est multiple. En effet, plus la raideur est
grande, plus la liaison est forte et dure à casser (demande plus d’énergie pour la rompre).

11. En égalant l’expression classique et l’expression quantique pour le niveau n = 1 :

1

2
µω2

0x
2
m =

3hω0

4π

xm =

√
3h

4π2µf0
= 8.29pm

L’élongation est inférieure à 1/10 de la longueur de la liaison C-O, ce qui est cohérent avec
l’approximation |r − req| ≪ req.
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Exercice 18 : Ressort massif sur une sphère

La clé est le choix du système de coordonnées. On est sur une sphère, donc le mieux est
de choisir les coordonnées sphériques d’axe (Oz). Puisque le ressort est à l’horizontale, on est
à φ fixé, en plus d’être à r fixé. On peut donc repérer la hauteur du ressort uniquement par
l’angle θ. L’énergie potentielle du système est l’énergie potentielle de pesanteur plus l’énergie
potentielle élastique. On va donc calculer ces deux énergies et trouver l’extremum. On verra
ensuite s’il est stable.

Pour calculer ces deux énergies, il faut calculer la hauteur de l’élastique et sa longueur en
fonction de θ.

z

θ
R cos(θ)

R

R sin(θ)

Donc Epp = MgR cos(θ). Et Epel =
1

2
k(2πR sin(θ)− l0)

2.

Ep = MgR cos(θ) +
1

2
k(2πR sin(θ)− l0)

2

On dérive l’énergie potentielle pour trouver les positions d’équilibre et déterminer leur stabilité :

dEp

dθ
= 2πRk cos(θ)(2πR sin(θ)− l0)−MgR sin(θ)

= 2πRk cos(θ)
(
2πR sin(θ)− l0 −

Mg

2πk
tan(θ)

)
= 4π2R2k cos(θ)

(
sin(θ)−

( l0
2πR

+
Mg

4π2Rk
tan(θ)

))
θ est l’angle des sphériques, donc varie entre 0 et π. Pour qu’il y ait une position d’équilibre, il

faut que l’un des deux membres du produit s’annule. Or on ne peut pas trouver analytiquement
les zéros de la fonction de droite. On fera donc une résolution graphique. Et si vous êtes arrivés
là et que vous avez tenté une résolution graphique, c’est très très bien. Toute la discussion
qui suit est longue et compliquée, et la correction officielle donnée par l’X fait comme si
la question de la stabilité ne se posait pas, ce qui pourrait presque amener à penser que
ceux qui ont écrit la correction n’ont simplement pas pensé à ça. Le cœur du problème est
l’établissement de l’équation transcendantale.
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On évacue déjà le cas limite M = 0. La dérivée de l’énergie potentielle devient :

dEp

dθ
= 4π2R2k cos(θ)

(
sin(θ)− l0

2πR

)
On trace cette fonction d’abord dans le cas l0 < 2πR.

π
2

π

−0.4

−0.2

0.2

0.4

θ1 θ3
θ2

θ

La force est l’opposée de la dérivée l’énergie potentielle, un point d’équilibre stable est
tel que la force soit décroissante, donc on veut un point d’annulation où cette fonction soit
croissante de θ. θ1 et θ3 sont stables, et θ2 est instable. On peut donc très bien le comprendre
qualitativement : l0 < 2πR, donc il existe un θ entre 0 et

π

2
tel que la longueur de l’élastique

pour ce θ vaille l0. Cela minimise donc l’énergie potentielle élastique. Par symétrie, π − θ
convient également (puisqu’on suppose que le ressort est sans masse, le haut et le bas de la
sphère sont équivalents. Et sur la sphère, la longueur de l’élastique est maximale au niveau
de l’équateur, donc en

π

2
. C’est donc un maximum de l’énergie potentielle, ce qui en fait une

position d’équilibre instable.

On trace ensuite cette fonction dans le cas l0 > 2πR :

π
2

π

−1.5

−1

−0.5

0.5

1

1.5

θ1

θ

On remarque qu’il n’y a qu’une seule position d’équillibre, θ =
π

2
, et qu’elle est stable.

Cela s’explique encore une fois très bien qualitativement, le rayon étant trop petit, toutes les
longueurs possibles pour l’élastique sont plus petites que sa longueur à vide, la plus grande
longueur de l’élastique minimise donc son énergie potentielle, et la plus grande longueur
possible pour l’élastique est à l’équateur, en θ =

π

2
. Cependant, cette position n’est pas
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physiquement réalisable car elle brise la condition de contact. Cela sera discuté un peu plus
bas.

On suppose désormais M > 0.

On veut trouver les annulations de la fonction

dEp

dθ
= 4π2R2k cos(θ)

(
sin(θ)−

( l0
2πR

+
Mg

4π2Rk
tan(θ)

))
et, puisque la force est l’opposé de la dérivée de l’énergie potentielle, et qu’un point

d’équilibre stable est un point d’annulation de la force tel que la force y soit localement
décroissante, on cherche un point d’annulation de cette fonction où elle soit localement
croissante.

Cette fonction est un produit de deux fonctions. On évacue déjà la position θ =
π

2
, qui

annule le cosinus. Puisque M ̸= 0, on a :

cos(θ)
(
sin(θ)−

( l0
2πR

+
Mg

4π2Rk
tan(θ)

))
=

θ→π
2

− Mg

4π2Rk
cos(θ) tan(θ)

=
θ→π

2

− Mg

4π2Rk
sin(θ) →

θ→π
2

− Mg

4π2Rk
< 0

Donc
π

2
n’est pas une position d’équilibre. On a donc uniquement à s’intéresser aux annulations

de la fonction :
f(θ) = sin(θ)−

( l0
2πR

+
Mg

4π2Rk
tan(θ)

)
On voit que si

l0
2πR

est suffisamment grand, le terme de droite sera toujours au-dessus du

sinus, et il n’y aura pas de solution pour θ ⩽
π

2
. On trace donc sin(θ) en bleu et l0

2πR + Mg
4π2Rk

tan(θ)

en rouge pour un l0 suffisamment petit :

π
2

π

0.2

0.4

0.6

0.8

1

1.2

θ1 θ2
θ3

θ

Pour θ1, on remarque que la pente du sinus est plus grande que la pente du terme de droite,
f est donc localement croissante, f ′(θ1) > 0. On peut donc calculer :

d2Ep

dθ2

∣∣∣
θ=θ1

= 4π2R2k(f ′(θ1) cos(θ1)− f(θ1) sin(θ1)) = 4π2R2kf ′(θ1) cos(θ1) > 0

Donc θ1 est une position d’équilibre stable.
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Pour θ2 puisque la pente de sinus est plus faible que la pente de la fonction de droite dans
f , f est localemet décroissante en θ2, f ′(θ2) < 0. En fait le même calcul que pour θ1 :

d2Ep

dθ2

∣∣∣
θ=θ2

= 4π2R2kf ′(θ2) cos(θ2) < 0

Donc θ2 est une position d’équilibre instable.

Enfin, pour θ3, on remarque que la pente de sinus est plus petite que la pente de la fonction
de droite, donc f ′(θ3) < 0. Mais puisque θ3 ∈

]π
2
;π

[
, cos(θ3) < 0 Donc :

d2Ep

dθ2

∣∣∣
θ=θ3

= 4π2R2kf ′(θ3) cos(θ3) > 0

Donc θ3 est une position d’équilibre stable.

Analysons un peu ces résultats. Il semble logique que θ1 soit stable, il ’agit d’une position
proche de la longueur à vide du ressort, mais un peu plus bas à cause de la gravité. C’est le
prolongement continu de θ1 dans le cas où M > 0. On peut comprendre que θ2 soit instable : le
ressort est à un point de compensation des forces gravitationnelles et élastiques, mais c’est
un point où la longueur du ressort est maximale, le ressort est trop tendu, il va donc "sauter"
à la moindre perturbation.

Vient ensuite la discussion plus délicate de θ3. Mathématiquement, on a prouvé que c’était
une position d’équilibre stable. Cependant on peut se demander comment il est possible
qu’une position soit stable alors qu’elle est en bas de la sphère, le ressort ne devrait-il pas
tomber ? Et bien si, absolument, seulement notre modèle qui décrit l’énergie potentielle du
système ne décrit pas la condition grâce à laquelle le ressort tient sur la sphère. En effet,
comme vous le verrez en mécanique, il y a contact tant que la réaction du support est positive
selon la normale à la surface : ici, il faut que R⃗ · u⃗r > 0. Et la force R⃗ ne travaille pas, donc n’est
pas prise en compte dans notre modèle énergétique. Et pour que la position θ3 soit atteinte, on
voit que le poids tire vers le bas, que la tension de rappel élastique tire dans le plan horizontal,
ce qui impose la réaction de la sphère à tirer vers le haut, donc cela implique R⃗ · u⃗r < 0. C’est la
condition de non-contact, cela veut donc dire que l’élastique rompt le contact avec la sphère.
Donc, θ3 est bien un minimum de l’énergie potentielle, mais des aspects non-énergétiques de
la mécanique rendent cette position impossible.

u⃗r

R⃗

P⃗

u⃗x

u⃗z

Puisque P⃗ est selon u⃗z vers le bas, et que la tension du ressort est selon u⃗x, par principe
fondamental de la statique, R⃗ a une composante non nulle positive selon u⃗z. Or elle est
colinéaire à u⃗r parce qu’on suppose qu’il n’y a pas de frottements. Cela fait qu’elle est
nécessairement dans l’autre sens que u⃗r. Ce qui impose R⃗ · u⃗r < 0.

Donc θ3 n’est pas une position accessible. Regardons maintenant quelques cas limites.

Quand M ≪ kR

g
, la tangente est de plus en plus écrasée, et ne prend des valeurs importantes
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que quand elle diverge, donc proche de
π

2
. Donc θ2 →

M≪
kR

g

π

2
. Par ailleurs, comme tangente

s’écrase, les valeurs de θ1 et θ2 sont à peu de choses près dictées par l’équation sin(θ) =
l0

2πR
.

On se rapproche donc continûment du cas M = 0, ce qui explique à nouveau l’instabilité de θ2
et la stabilité énergétique de θ1 et θ3.

π
2

π

0.2

0.4

0.6

0.8

1

1.2

θ1 θ3

θ

Regardons maintenant ce qu’il se passe quand l0 augmente.
l0

2πR
est la valeur en 0 du

membre de droite dans f , donc si l0 grandit, il n’y aura plus de solution entre 0 et
π

2
(on se

restreint à cet intervalle puisqu’on a dit que les solutions plus grandes que π n’ont pas de
réalité physique) :

π
2

0.2

0.4

0.6

0.8

1

1.2

θ

Les deux solutions d’équilibre se rapprochent quand l0 augmente, puis deviennent égales,
puis disparaissent. Quand il n’y a qu’une solution, les deux courbes sont tangentes. Leurs
dérivées sont donc égales. On a alors 2 équations, qui nous permettent de prédire la valeur
critique de l0 à partir de laquelle une solution d’équilibre (stable) existe :{

f(θ) =0

f ′(θ) =0
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Il se trouve qu’on peut résoudre explicitement f ′(θ) = 0 !

f ′(θ) = cos(θ)− Mg

4π2Rk

1

cos2(x)
= 0

cos3(θ) =
Mg

4π2Rk

Et θ ∈ [0, π], donc on peut utiliser arcos sans peur :

θ = arcos
(( Mg

4π2Rk

)1/3)
On réinjecte dans l’équation f(θ) = 0 et on obtient pour lc la longueur critique :

sin(θ)− lc
2πR

− Mg

4π2Rk
tan(θ) = 0

lc = 2πR
(
sin

(
arcos

(( Mg

4π2Rk

)1/3))
−− Mg

4π2Rk
tan

(
arcos

(( Mg

4π2Rk

)1/3)))
Pour l0 < lc il y a deux positions d’équilibre, dont une stable, et pour l0 > lc, il n’y a pas de
position d’équilibre. On peut simplifier l’expression de lc avec les formules trigonométriques

suivantes : sin(arcos(x)) =
√
1− x2 et tan(arcos(x)) =

√
1− x2

x
:

lc = 2πR
(
1−

( Mg

4π2Rk

)2/3)√
1−

( Mg

4π2Rk

)2/3
= 2πR

(
1−

( Mg

4π2Rk

)2/3)3/2

(On les obtient en posant θ = arcos(x) dans cos2(θ) + sin2(θ) = 1). Cela nous donne explicite-
ment les dépendances de la longueur à vide critique. On remarque que lc < 2πR, c’est-à-dire
que la gravité réduit la longueur à vide maximale permettant d’atteindre l’équilibre. Cela peut
se comprendre : si on est en présence de gravité, la longueur à vide 2πR, qui ne peut être
atteinte qu’à l’équateur, est instable (à l’équateur, le poids tire vers le bas et rien ne le contre).
La gravité rend donc instable des longueurs proches de l’équateur, qui, en abscence de gravité,
permettraient d’atteindre l’équilibre.

Regardons enfin ce qui se passe quand l0 est petit. On voit graphiquement qu’on fait
descendre la courbe rouge, ce qui fait progressivement tendre θ1, la seule position d’équilibre
stable, vers 0.

C’est un bel exo.

Exercice 19 : Quasi-ressort

Cf. cours pages 11-12.

Exercice 20 : Pendule simple

1. On va utiliser les coordonnées polaires de centre 0. On fait le bilan des forces s’appliquant
à m :
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θ

P⃗

T⃗

u⃗θ

u⃗rθ

l

Il y a la tension de la corde : T⃗ = −T u⃗r. On ne peut pas connaître l’expression générale de
cette force, on va donc devoir projeter le PFD sur l’axe orthogonal à T⃗ pour éviter ce problème,
c’est-à-dire u⃗θ.

Il y a le poids : P⃗ · u⃗θ = −mg sin(θ)

L’accélération selon u⃗θ vaut :
aθ = 2ṙθ̇ + rθ̈ = lθ̈

On applique le PFD à m en projection selon u⃗θ :

mlθ̈ = −mg sin(θ)

θ̈ = −g

l
sin(θ)

2. On cherche les θeq tels que sin(θeq) = 0, c’est-à-dire θeq = 0 et θeq = π.

3. sin est croissante autour de 0, donc −g

l
sin(θ) est décroissante autour de 0, donc θeq = 0

est une position d’équilibre stable. sin est décroissante au voisinage de π, donc −g

l
sin(θ) est

croissante autour de π, donc θeq = π est une position d’équilibre instable.

4. On suppose |θ| ≪ 1. On rappelle le DL à l’ordre 1 de sin au voisinage de 0 : sin(x) =
|x|≪1

x.

Donc :
θ̈ = −g

l
sin(θ) =

|θ|≪1
−g

l
θ

θ̈ +
g

l
θ = 0

On a donc un oscillateur harmonique de pulsation propre ω =

√
g

l
.

Exercice 21 : Formule de Borda

1. Cf. exercice 20 :
θ̈ +

g

l
sin(θ) = 0

2. Cf. exercice 20 : On a un oscillateur harmonique de pulsation ω0 =

√
g

l
et de période

T0 =
2π

ω0
= 2π

√
l

g
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3. On a maintenant l’équation approchée :

θ̈ = −ω2
0

(
θ − θ3

6

)
On réinjecte θ(t) = θ0 cos(ωt) dans cette équation :

−ω2θ0 cos(ωt) = −ω2
0

(
θ0 cos(ωt)−

θ30
6
cos3(ωt)

)
On utilise ensuite la formule trigonométrique donnée :

−ω2θ0 cos(ωt) = −ω2
0

(
θ0 cos(ωt)−

θ30
24

(3 cos(ωt) + cos(3ωt))
)

−ω2θ0 cos(ωt) = −ω2
0

(
θ0 −

θ30
8

)
+

ω2
0θ

3
0

24
cos(3ωt)

On identifie donc :
−ω2θ0 = −ω2

0

(
θ0 −

θ30
8

)
ω2 = ω2

0

(
1− θ20

8

)
Et on a une période de :

T =
2π

ω
=

2π

ω0

1√
1− θ20

8

= T0

(
1− θ20

8

)−1/2
=

|θ0|≪1
T0

(
1 +

θ20
16

)
C’est la formule de Borda. L’approximation d’oscillateur harmonique est très bonne car le
terme correctif est non seulement en θ20, donc d’ordre 2, mais en plus il y a un facteur 1

16 qui
réduit grandement l’influence du terme correctif. Même si on prend θ0 = 2rad ≈ 115◦, qui n’est
pas un petit angle, l’erreur relative n’est que de 10%. On est donc très proche de l’harmonicité
(la non dépendance de la période en les conditions intiales).

4. On trace en rouge l’énergie potentielle parabolisée, et en bleu l’énergie potentielle de
pesanteur réelle :

θ

On remarque que la pente de l’énergie potentielle réelle est plus faible que la pente de
l’énergie potentielle parabolisée, donc la force de rappel réelle est moins forte que la force
de rappel linéaire, donc le système est moins poussé à vite revenir à la position d’équilibre,
donc T est plus grand que T0. Et puisque la pente de l’énergie potentielle réelle diminue en
valeur absolue quand θ0 augmente, plus θ0 augmente, plus la force de rappel au niveau de
θ0 est faible, donc plus le système prend du temps à revenir à sa position d’équilibre. C’est
pourquoi T est croissante de θ0.
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Exercice 22 : Pendule accéléré

On veut pouvoir calculer l’accélération du point M . On a :
−−→
OM =

−−→
OO′ +

−−−→
O′M

Donc l’accélération du point M vaut :

a⃗tot = au⃗x + a⃗Polaires centre O′

On fait le bilan des forces qui s’appliquent sur le pendule.

O′

θ

l

θ

θ

u⃗θ

u⃗r

au⃗x

P⃗

T⃗

Il y a la tension du fil, T⃗ = −T u⃗r. On ne peut pas connaître l’expression générale de cette
force, il va donc falloir projeter le PFD sur l’orthogonal à T⃗ , c’est-à-dire u⃗θ.

On pourrait la refaire, mais la projection du poids selon u⃗θ est exactement la même pour le
pendule simple non accéléré (cf.exercice 20), on a donc P⃗ · u⃗θ = −mg sin(θ).

On a projeté toutes les forces, mais pour pouvoir écrire le PFD il faut également projeter
au⃗x dans la base polaire (pour pouvoir écrire la partie accélération du PFD). Sur le schéma on
voit au⃗x · u⃗θ = a cos(θ).

On écrit ensuite l’accélération dans la base polaire selon u⃗θ, sachant que l est constant :

aθ = 2ṙθ̇ + rθ̈ = lθ̈

On écrit le PFD en projection selon u⃗θ :

m(a cos(θ) + lθ̈) = −mg sin(θ)

θ̈ = −g

l
sin(θ)− a

l
cos(θ)

La position d’équilibre vérifie
sin(θeq) = −a

g
cos(θeq)

Et cos(θeq) n’est pas nul car cosinus ne s’annule qu’en
π

2
, et en ce point, sinus n’est pas nul. On

peut donc diviser par cos(θeq) sans risquer de perdre une position d’équilibre.

tan(θeq) = −a

g
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θeq = − arctan
(a
g

)
Si a = 0, on retrouve bien θeq = 0. On voit que si a > 0, la position d’équilibre est décalée vers la
gauche, ce qui correspond bien à ce à quoi on s’attend. On va maintenant calculer la pulsation
des petites oscillations. On suppose θ = θeq + ε, avec |ε| ≪ 1.

cos(θeq + ε) =
|ε|≪1

cos(θeq)− sin(θeq)ε

sin(θeq + ε) =
|ε|≪1

sin(θeq) + cos(θeq)ε

On réinjecte le tout dans l’équation, et on ne s’embête pas à calculer le terme constant,
puisqu’il correspond à l’équilibre donc s’annule :

ε̈ =
|ε|≪1

−g

l
cos(θeq)ε+

a

l
sin(θeq)ε = −cos(θeq)

l
(g − a tan(θeq)) = −cos(θeq)

l

(
g +

a2

g

)
ε

Et θeq est une arctangente donc est dans [−π/2, π/2], donc cos(θeq) ⩾ 0. Donc la position
d’équilibre est stable, et la pulsation des petites oscillations vaut :

ω0 =
(cos(θeq)

l

(
g +

a2

g

))1/2

En terminale, on peut s’arrêter là. Je vais juste vous montrer une petite astuce pour se
débarasser du cos(θeq) et obtenir une expression plus jolie et lisible :

cos2(arctan(x)) + sin2(arctan(x)) = 1

1 + tan2(arctan(x)) =
1

cos2(arctan(x))

1 + x2 =
1

cos2(arctan(x))

cos(arctan(x)) =
1√

1 + x2

Car, comme on l’a déjà dit, cos(arctan(x)) ⩾ 0. Si on reprend notre formule pour la pulsation
propre du pendule accéléré :

ω2
0 =

1

l

g + a2

g√
1 + (ag )

2
=

1

l

g2 + a2√
g2 + a2

=

√
g2 + a2

l

ω0 =
(√g2 + a2

l

)1/2

On retrouve bien la pulsation propre du pendule simple dans le cas a = 0.

Exercice 23 : Bille sur un anneau en rotation

1. La bille est astreinte à se déplacer sur un cercle de centre O, les coordonnées les plus
adaptées sont donc les polaires de centre O.
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2. On va appliquer le PFD. On fait le bilan des forces qui s’appliquent au système :

O

z

θ

Ω

R

R sin(θ)
θ

θ
u⃗θ

u⃗r

F⃗ie

P⃗

T⃗

Il y a la réaction de l’anneau, qui est normale à l’anneau car on ne considère pas les
frottements, T⃗ = −T u⃗r. On ne peut pas connaître l’expression générale de cette force, il va
donc falloir projeter le PFD sur l’axe orthogonal à T⃗ , pour éviter ce problème. C’est-à-dire
selon u⃗θ.

Il y a la force d’inertie d’entraînement, F⃗ie · u⃗θ =
∥∥∥F⃗ie

∥∥∥ cos(θ) = mΩ2R sin(θ) cos(θ).

Et enfin, le poids, P⃗ · u⃗θ = −mg sin(θ).

L’accélération en polaire selon u⃗θ à r fixé vaut aθ = 2ṙθ̇ + rθ̈ = Rθ̈. On applique le PFD :

mRθ̈ = −mg sin(θ) +mΩ2R sin(θ) cos(θ)

θ̈ = − g

R
sin(θ) + Ω2 sin(θ) cos(θ)

3. Les positions d’équilibre sont les solutions de l’équation :

− g

R
sin(θ) + Ω2 sin(θ) cos(θ) = 0

sin(θ)
(
Ω2 cos(θ)− g

R

)
= 0

Donc on a θeq1 = 0 et θeq2 = π. Si Ω2 <
g

R
, il n’y a pas d’autre positon d’équilibre. On définit donc

Ωc =

√
g

R
. Si Ω > Ωc, on a deux autres positions d’équilibre : θeq± = ±arcos

(Ω2
c

Ω2

)
. Cela nous

permet d’établir le graphique suivant, des positions d’équilibre en fonction de Ω :
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Ω
Ωc

π

π
2

−π
2

4. Si Ω > Ωc, la stabilité des positions θeq± a été montrée dans le cours aux pages 8 et 9. Il
est clair que θeq2 = π est toujours instable, on va donc s’intéresser à θeq1 = 0. On va faire un DL
au voisinage de 0. On suppose que |θ| ≪ 1. On a donc :

θ̈ = −Ω2
c sin(θ) + Ω2 sin(θ) cos(θ) =

|θ|≪1
−Ω2

cθ +Ω2θ × 1 = −(Ω2
c − Ω2)θ

Cette position est donc stable pour Ω < Ωc, et instable pour Ω > Ωc. On rapporte le tout sur le
graphique de la question précédente :
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Ω
Ωc

π

π
2

−π
2

stable

stable

stable

instable

instable

Il y a bifurcation car la position d’équilibre stable θeq1 = 0 devient instable et se sépare en
deux positions d’équilibre stables, l’une positive, l’autre négative.

Exercice 24 : Énergie, force, équilibre et stabilité

Comme on l’a dit dans le cours, une position d’équilibre est un point d’annulation de la
force (x1) et un extremum de l’énergie potentielle (x4). Il faut donc avoir : x1 = x4. Réponse 2.

Exercice 25 : Énergie et stabilité

On remarque qu’il y a deux extrema de l’énergie potentielle, c’est-à-dire deux positions
d’équilibre : r = 0, qui est un minimum de U , donc une position d’équilibre stable, et un certain
r > 0, qui est un maximum de U , donc une position d’équilibre instable. La seule affirmation
vraie est donc qu’il y a une position d’équilibre instable non nulle, c’est-à-dire la Réponse 4.

Exercice 26 : Force centrale

1. La force est à symétrie sphérique et le mouvement se fait dans un plan, on choisit donc
les polaires de centre O.

2. On écrit le PFD appliqué à la masse m en polaires : m(r̈ − rθ̇2) =− k

rn

m(2ṙθ̇ + rθ̈) = 0

On cherche une orbite circulaire, c’est-à-dire r = r0. On simplifie donc les équations :
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−mr0θ̇
2 =− k

rn0

mr0θ̈ = 0

Donc θ̇ est constant, θ̇ = θ̇0. On le réinjecte dans la première équation :

r0θ̇
2
0 =

k

mrn0

SI r0 et θ̇0 vérifient cette équation, le mouvement est circulaire.

3. On réécrit le PFD dans ce cas :  r̈ − rθ̇2 =− k

mrn

2ṙθ̇ + rθ̈ = 0

De la deuxième équation on déduit, grâce à la formule donnée, que

1

r

d

dt
(r2θ̇) = 2ṙθ̇ + rθ̈ = 0

Donc r2θ̇ = r20 θ̇0. Ce qui nous permet de faire disparaître θ̇ en l’exprimant en fonction de r :

θ̇ =
r20
r2

θ̇0

On réinjecte cette expression dans la première équation du PFD :

r̈ − r
(r20
r2

θ̇0

)2
= − k

mrn

r̈ − r40
r3

θ̇20 = − k

mrn

On utilise ensuite l’écriture r = r0 + δr :

δr̈ − r40
(r0 + δr)3

θ̇20 = − k

m(r0 + δr)n

δr̈ − r0

(
1 +

δr

r0

)−3
θ̇20 = − k

mrn0

(
1 +

δr

r0

)−n

On fait ensuite les DL en utilisant δr
r0

≪ 1 et (1 + x)α =
x≪1

1 + αx, et on ne calcule pas les
termes constants, ils s’annulent puisqu’ils correpondent au mouvement circulaire, donc sont
égaux :

δr̈ + 3θ̇20δr = n
k

mrn+1
0

δr

δr̈ +
(
3θ̇20 − n

k

mrn+1
0

)
δr = 0

On utilise la relation trouvée à la question précédente :

k

mrn+1
0

= θ̇20
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Ce qui donne :

δr̈ + (3θ̇20 − nθ̇20)δr = 0

δr̈ + (3− n)θ̇20δr = 0

4. Si n < 3, l’orbite circulaire est stable. Si n > 3, l’orbite circulaire est instable. Pour n = 3,
l’ordre 1 ne permet pas de conclure. Il faudrait faire une étude aux ordres plus élevés, ce que
vous ne pouvez pas faire avec uniquement les DL à l’ordre 1.

5. Les questions intermédiaires précédentes nous donnent la marche à suivre, il suffit de
répliquer la méthode. On suppose que le mouvement est circulaire de rayon r0 et on écrit le
PFD dans ce cas : r0θ̇

2 =
k

mr20
exp(−ar0)

θ̈ = 0

Donc θ̇ = θ̇0. On obtient alors la condition :

r0θ̇
2
0 =

k

mr20
exp(−ar0)

On suppose que l’on a légèrement perturbé l’orbite circulaire, on pose donc r = r0 + δr avec
δr
r0

≪ 1. Le PFD selon u⃗θ donne, comme tout à l’heure :

d

dt
(r2θ̇) = 0

Donc r2θ̇ = r20 θ̇0, on exprime alors θ̇ en fonction de r :

θ̇ =
r20
r2

θ̇0

On le réinjecte dans le PFD selon u⃗r :

r̈ − r
r40
r4

θ̇20 = − k

mr2
exp(−ar)

r̈ − r40
r3

θ̇20 = − k

mr2
exp(−ar)

On fait ensuite le DL de tous les termes en r au voisinage de r0 :

r40
r3

θ20 =
r40

(r0 + δr)3
θ̇20

= r0θ̇
2
0

(
1 +

δr

r0

)−3

=
δr
r0

≪1
cste− 3θ̇20δr

On ne calcule pas la constante car on sait qu’elle va s’annuler puisqu’on est au voisinage
de l’équilibre. On fait le DL de l’autre terme :

k

mr2
exp(−ar) =

k

m(r0 + δr)2
exp(−a(r0 + δr))
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=
k

mr20

(
1 +

δr

r0

)−2
e−ar0 exp(−aδr)

=
δr≪r0,

1
a

k

mr20
e−ar0

(
1− 2

δr

r0

)
(1− aδr)

= cste+
k

mr20
e−ar0

(
− a− 2

r0

)
δr

= cste− k

mr20
e−ar0

(
a+

2

r0

)
δr

= cste− r0θ̇
2
0

(
a+

2

r0

)
δr

En utilisant la relation qui caractérise l’orbite circulaire. On réinjecte le tout :

δr̈ + 3θ̇20δr = +θ̇20(2 + ar0)δr

δr̈ + (1− ar0)θ̇
2
0δr = 0

Donc l’orbite est stable si et seulement si r0 < 1
a .

Exercice 27 : Palet flottant

On repère le palet par la position de sa base, qu’on repère par sa coordonée z, dont on met
l’origine à au niveau de la surface de l’eau.

O

z

a

On fait le bilan des forces s’appliquant sur le cube : il y a le poids, qui s’écrit P⃗ · u⃗z = −mg.
Il y a les frottements fluides, que l’on va négliger, ce qui revient à supposer que la vitesse
n’est pas trop importante. On quantifiera cela plus tard.

Il y a enfin la poussée d’Archimède. On suppose que l’amplitude du mouvement est
suffisamment petite pour que le bloc ne soit jamais sous l’eau, ce qui fait qu’une hauteur −z
du bloc est sous le niveau de l’eau, ni ne quitte l’eau complètement. La poussée d’Archimède
est une force qui s’exerce à l’équilibre. On suppose donc que le mouvement est suffisamment
lent pour que tout moment soit un état d’équilibre, ce qui permet d’écrire qu’à tout moment,
le système est soumis à une force opposée au poids de fluide déplacé. Donc :

Π⃗A · u⃗z = ρeau(−z)× a2g

On applique donc le PFD en projection selon u⃗z :
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ρa3z̈ = −ρa3g − zρeaua
2g

z̈ +
ρeau
ρ

g

a
z = −g

On pose donc ω0 =

√
ρeau
ρ

g

a
et zeq = −a

ρ

ρeau
. On a alors :

z̈ + ω2
0z = zeq

C’est un oscillateur harmonique. Le mouvement est donc sinusoïdal de pulsation ω0. Le
mouvement est de la forme :

z(t) = A cos(ω0t+ φ) + zeq

On veut d’abord vérifier l’hypothèse que le bloc ne plonge pas sous l’eau et qu’il ne saute
pas au-dessus du niveau de la mer. Il faut pour cela que :

|A|+ zeq ⩽ 0

|A| ⩽ −zeq = a
ρ

ρeau
et que :

−|A|+ zeq ⩾ −a

|A| ⩽ zeq + a = a
(
1− ρ

ρeau

)
Il suffit de calculer A en fonction des conditions initiales :{

A cos(φ) =z0 − zeq

−Aω0 sin(φ) = v0

A2 cos2(φ) +A2 sin2(φ) = (z0 − zeq)
2 +

( v0
ω0

)2

A2 = (z0 − zeq)
2 +

( v0
ω0

)2

|A| =
√

(z0 − zeq)2 +
( v0
ω0

)2

√
(z0 − zeq)2 +

( v0
ω0

)2
⩽ amin

( ρ

ρeau
,
(
1− ρ

ρeau

))
On veut ensuite vérifier l’hypothèse de négligeabilité des frottements. On imagine bien (si

vous avez déjà vu une bouée flotter sur l’eau) que le mouvement est relativement lent, donc
que les frottements sont linéaires en v⃗, on utilise donc l’expression de la force de Stokes :

F⃗Stokes = −6πηav⃗

On applique le PFD avec cette force :

z̈ + 6πηaż + ω2
0z = zeq

On veut la mettre sous forme canonique, on a donc :
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6πηa =
ω0

Q

Q =
ω0

6πηa
=

1

6πηa

√
ρeau
ρ

g

a

L’amortissement est négligeable si le facteur de qualité est grand devant 1 :

1

6πηa

√
ρeau
ρ

g

a
≫ 1

η ≪ a−3/2

√
g
ρeau
ρ

On veut ensuite vérifier que l’on peut supposer que chaque instant est un instant d’équilibre
(pour pouvoir appliquer l’expression de la poussée d’Archimède). On a négligé la viscosité,
donc le mouvement de l’eau est dû uniquement à la gravité. On va donc fabriquer un temps
typique de retour à l’équilibre. Il est lié à la gravité, donc on utilise g. [g] = L.T−2. Il faut donc
se débarasser de la longueur. Et une longueur typique du problème est a. On pose donc

τ =

√
a

g

Il faut que le temps de retour à l’équilibre soit très faible devant le temps typique du
mouvement :

τ ≪ 1

ω0√
a

g
≪

√
ρ

ρeau

a

g
√
ρeau ≪ √

ρ

ρeau ≪ ρ

C’est donc nécessairement une mauvaise approximation, tant que le bloc flotte. On peut
s’y attendre, car si vous voyez une bouée flotter à la surface de l’eau, elle crée des vagues
qui sont visibles et de fréquence la pulsation propre de l’oscillation, l’eau n’est donc pas à
l’équilibre, puisqu’elle est sérieusement impactée par le mouvement de la bouée.

Exercice 28 : Grains de sable dans un cylindre

On va corriger la version aidée, ce qui corrigera la version brutale.

1. On a affaire à un cylindre, on choisit donc les cylindriques d’axe l’axe de révolution du
cylindre.

2. On va séparer ce qui se passe dans le plan (u⃗r, u⃗θ) de ce qui se passe selon u⃗z.
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z

R

α

u⃗r

u⃗θ

α

P⃗

N⃗
u⃗z

O′

O

On va d’abord appliquer le PFD en projection selon u⃗z. On fait le bilan des forces s’appliquant
sur le point en mouvement.

Il y a la réaction du support, qui est normale à la surface car on néglige les frottements,
N⃗ = −Nu⃗r.

Il y a également le poids P⃗ = −mg sin(α)u⃗z + (. . . )u⃗r + (. . . )u⃗θ. On s’intéressera à ce qui se
passe dans le plan (u⃗r, u⃗θ) après. Il reste à calculer l’accélération selon u⃗z.

az = z̈
On applique le PFD selon u⃗z :

mz̈ = −mg sin(α)

z̈ = −g sin(α)

C’est exactement l’équation de la chute libre, mais avec un poids de norme mg sin(α).

On regarde ensuite ce qui se passe dans le plan (u⃗r, u⃗θ). On voit sur le schéma plus haut
que le poids dans le plan en question est de norme mg cos(α).

O′

θ

R

θ

u⃗θ

u⃗r

P⃗

N⃗

u⃗z

On remarque qu’on a exactement affaire à un pendule simple de poids mg cos(α) et de
longueur R. Voir la correction de l’exercice 20 pour les projections et l’accélération.

34/49



Physicité L’oscillateur harmonique (corrections)

Le PFD en projection selon u⃗θ donne alors :

θ̈ = − g

R
cos(α) sin(θ)

3. Puisque la position initiale est proche de A et la vitesse initiale est nulle (c’est le sens
de "on pose", sous-entendu on ne leur a pas donné de vitesse initiale), on peut simplifier
l’équations sur θ pour des petites oscillations :

θ̈ = − g

R
cos(α)θ

Pour les détails de la résolution, voir le cours page 11. La solution est donc :

θ(t) = θ0 cos(ω0t)

Avec ω0 =

√
g

R
cos(α). Pour l’équation selon u⃗z, on résout comme pour la chute libre :

z̈ = −g sin(α)

On primitive :

ż(t) = −gt sin(α) + ż0

La vitesse initiale étant nulle :

ż(t) = −gt sin(α)

On primitive :

z(t) = −1

2
gt2 sin(α) + z0

À t = 0, z = L, donc z0 = L.

z(t) = −1

2
gt2 sin(α) + L

4. Les particules de sable suivent toutes les équations horaires trouvées à la question
précédente, simplement toutes avec θ0 différent. On va faire l’hypothèse que les particules de
sable ne s’entrechoquent pas. C’est une hypothèse très fausse, mais puisque les particules
oscillent toutes à la même pulsation, ça ne va pas beaucoup changer le résultat : les chocs
ne changeront pas la moyenne de l’oscillation. C’est également une hypothèse nécessaire à
faire si on veut pouvoir traiter l’exercice, donc on la fait (c’est une bonne leçon à retenir, les
hypothèses permettant de résoudre le problème analytiquement sont toujours à faire dans un
exercice).

Grâce au résultat de la question précédente, on sait que chaque grain de sable arrive tout
en bas du cylindre en un temps :

0 = −1

2
gτ2 sin(α) + L

τ =

√
2L

g sin(α)

On veut qu’à l’instant τ , θ = 0 (c’est l’angle du point B) :
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cos(ω0τ) = 0

Donc :
ω0τ =

π

2
+ nπ

Avec n ∈ N. Cela se réécrit :

L =
1

2
R
(π
2
+ nπ

)2
tan(α)

Pas mal, non ?

Exercice 29 : L’oscillateur harmonique amorti

Le nombre N d’oscillations visibles est environ le nombre d’oscillations qu’il y a sur le
graphique. La fréquence des oscillations est f = 200Hz, et on note T la période. Le nombre
d’oscillations sur le graphique est :

NT = ∆t

N =
∆t

T
= ∆t× f = 500

Et le cours nous dit que Q ≈ N = 500, c’est donc la réponse 4.

Problème 2 : ondes sonores dans un cristal monoatomique

1. (i) Dans le modèle microscopique il y a un atome de masse m tous les a, donc la masse
par unité de longueur vaut

m

a
.

Dans le modèle macroscopique, la masse de la barre vaut SLµ, donc la masse par unité de
longueur vaut µSL/L = µS.

La masse par unité de longueur doit être la même dans les deux modèles, donc :

m

a
= µS

(ii) a est la distance entre atomes au repos, donc correspond à la position d’équilibre de
l’interaction entre deux atomes. On fait donc le DL de l’énergie potentielle d’interaction :

Ep(a+ u) = Ep(a) +
dEp

dx

∣∣∣
x=a

u+
1

2

d2Ep

dx2

∣∣∣
x=a

u2

Puisque a est une position d’équilibre, donc
dEp

dx

∣∣∣
x=a

= 0 et K =
d2Ep

dx2

∣∣∣
x=a

> 0. Donc la force
exercée par l’interaction entre deux atomes vaut −Ku. Par principe des actions réciproques,
F = Ku. C’est une force élastique.

(iii) Le module d’Young est une force par unité de surface, c’est donc une pression. Elle
s’exprime donc en Pa. On a fait l’hypothèse que l’allongement était uniforme, donc :

L+ δL =
N∑
i=1

a+ u

L+ δL = N(a+ u)
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δL = Nu

δL

L
=

Nu

Na
=

u

a

On réinjecte le résultat de la question (ii) dans la relation définissant le module d’Young :

F

S
= E

δL

L

Ku

S
= E

u

a

On remplace S grâce au résultat de la question (i) :

µaK

m
=

E

a

K

m
=

E

µa2

Donc K =
Em

µa2
= 2.5 × 103Nm−1. C’est 50 fois plus que la raideur typique d’un ressort en

TP, c’est donc très très raide, très dur à allonger, ce qui semble logique, il n’est pas facile
d’allonger de l’acier.

Cela donne une pulsation
√

K

m
= 1.7× 1014Hz.

2. (i) On va appliquer le PFD en une dimension. On fait le bilan des forces s’appliquant sur
la particule n.

Il y a la force de rappel du ressort n− 1 : F(n−1)/n = K(a− (a+ un − un−1)) = −K(un − un−1)

Il y a la force de rappel du ressort n+ 1 : F(n+1)/n = −K(a− (a+ un+1 − un)) = −K(un − un+1).

On applique le PFD :

m
d2un
dt2

= −K(2un − un+1 − un−1)

(ii) un(t) = u0 sin(ωt− kna), donc
d2un
dt2

= −u0ω
2 sin(ωt− kna). Si on réinjecte le tout dans

l’équation précédente :

−mu0ω
2 sin(ωt− kna) = −K(u0 sin(ωt− kna)−u0 sin(ωt− k(n+ 1)a)+u0 sin(ωt− kna)−u0 sin(ωt− k(n− 1)a))

On utilise la première formule de trigonométrie donnée par l’énoncé :

ω2 sin(ωt− kna) =
K

m

(
2 sin

(k(n+ 1)a− kna

2

)
cos

(
ωt−k

(
n+

1

2

)
a
)
+2 sin

(k(n− 1)a− kna

2

)
cos

(
ωt−k

(
n−1

2

)))

ω2 sin(ωt− kna) = 2
K

m
sin

(ka
2

)(
cos

(
ωt− k

(
n+

1

2

)
a
)
− cos

(
ωt− k

(
n− 1

2

)))
Puis on utilise la deuxième formule de trigo donnée par l’énoncé :

ω2 sin(ωt− kna) = −4
K

m
sin(ωt+ kna) sin

(
− ka

2

)
37/49



Physicité L’oscillateur harmonique (corrections)

ω2 = 4
K

m
sin

(ka
2

)
Donc si sin

(
ka
2

)
< 0 il n’y a pas de solution, et si sin

(
ka
2

)
⩾ 0, on a :

ω = 2

√
K

m
sin

(ka
2

)
(iii)

k

ω

2π
a

4π
a

6π
a

2
√

K
m

k 7→ sin
(ka
2

)
est 2π/a périodique, donc le mouvement des atomes est inchangé par k 7→

+2pπ/a. C’est simplement un effet de l’invariance du problème par translation de a. Les grandes
longueurs d’ondes correspondent au petits k. Cela correspond au régime k ≪ 1/a. On fait alors
le DL du sinus au voisinage de 0 :

ω = 2

√
K

m
sin

(ka
2

)
=

ka≪1
2

√
K

m

ka

2
= ka

√
K

m

ω

k
= a

√
K

m

Cela correspond à un milieu non dispersif : la célérité,
ω

k
ne dépend pas de la fréquence.

Si ω > 2

√
K

m
, il est impossible d’avoir une onde progressive harmonique. Il y a donc de

l’atténuation. On dit que l’onde est évanescente.

(iv) Si l’on remplace une masse par m′ ≪ m, comme elle a une très faible inertie comparée
aux autres masses, elle oscille beaucoup plus que les autres masses. La masse m′ peut osciller
à des fréquences supérieures à la fréquence maximale du cristal (puique

√
K/m′ >

√
K/m).

Mais ces modes ne peuvent pas se propager sans atténuation dans le reste du cristal (comme
on l’a vu à la question précédente).

Imaginons maintenant qu’une onde progressive harmonique de vecteur d’onde k traverse

le milieu. Elle excite les atomes à la fréquence 2

√
K

m
sin

(ka
2

)
. Elle veut exciter la masse m′

à la fréquence 2

√
K

m′ sin
(ka
2

)
qui est différente. On ne peut donc pas avoir de propagation

harmonique. Il y a donc réflexion et diffusion (atténuation).
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(v) Pour qu’une fréquence soit admissible, il faut qu’une onde progressive harmonique
à cette fréquence puisse se propager, donc sans atténuation. Dans un cristal avec deux
masses m et m′ très différentes, qui ont deux fréquences propres très différentes. Ce sont
des oscillateurs couplés, donc il y a deux modes fondamentaux :

— le mode symétrique, les masses m et m′ sont en phase, les ressorts sont donc peu
sollicités. Il est donc possible d’exciter ce mode à très basse fréquence, puisque c’est
un mode où l’inertie joue peu, où les masses ont le temps de se déplacer ensemble de
manière quasi-statique.

— Le mode antisymétrique, les masses m et m′ sont en opposition de phase, les ressorts
sont donc très sollicités. Il faut donc une grande accélération pour aller avec ces grandes
forces : ce mode correspond donc à des hautes fréquences.

Si les masses m et m′ sont très différentes, ces deux modes sont très éloignés. Donc entre
ces deux modes, on peut trouver des fréquences n’étant pas assez faibles pour faire bouger
les masses en phase, et pas assez élevées pour faire bouger ces masses en opposition de
phase. Les différentes masses se gênent donc dans leur mouvement (on n’est pas dans une
situation où le mouvement de l’une aide le mouvement de l’autre comme dans les modes
symétriques et antisymétriques), donc il y a de l’atténuation. Cela fait qu’il y a une bande de
fréquences interdite.

3 L’oscillateur harmonique partout ailleurs

Exercice 30 : Encore de l’optique

1.

θ(y + dy)

θ(y)

y + dy

y

n(y + dy)

n(y)

On applique la loi de Snell-Descartes :

n(y + dy) sin(θ(y + dy)) = n(y) sin(θ(y))

d

dy
(n sin(θ)) = 0
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n(y) sin(θ(y)) = n0 sin (θ0) = n0

Car l’incidence est normale, donc θ0 =
π

2
.

2. On fait un schéma :

y

x

θ dy

dx

√
dx2 + dy2

On a donc sin(θ) =
dx√

dx2 + dy2
=

1√
1 +

(
dy
dx

)2

n(y)× 1√
1 + ( dydx)

2
= n0

n(y)

n0
=

√
1 +

(dy
dx

)2

(dy
dx

)2
=

(n(y)
n0

)2
− 1

3. On a donc :

y′(x)2 −
(
1− k

n0
y(x)

)2
= −1

On reconnaît, à un signe près, le théorème de l’énergie mécanique pour un ressort. On
dérive donc :

2y′y′′ − 2
(
− k

n0
y′
)(

1− k

n0
y
)
= 0

y′′ +
k

n0

(
1− k

n0
y
)
= 0

y′′ −
( k

n0

)2
y = − k

n0

On pose α =
k

n0
. On résout l’équation différentielle homogène associée :

y′′h − α2yh = 0

yh(x) = A cosh(αx) +B sinh(αx)
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Où on a défini cosh(t) =
et + e−t

2
et sinh(t) =

et − e−t

2
. On cherche ensuite la solution particulière,

le second membre étant constant, elle est constante.

yp =
1

α

On a :
y(x) = yh(x) + yp = A cosh(αx) +B sinh(αx) +

1

α

On a y(0) = 0, et puisque l’incidence est horizontale, y′(0) = 0.A+
1

α
=0

Bα =0

Donc :

y(x) =
1

α
(1− cosh(αx))

Dans le sujet original, ils n’avaient pas pensé à dériver, ce qui fait qu’ils incitaient à faire

un changement de variables θ =
n0 − ky

n0
, et donnaient la primitive de sec(θ), avec qui vaut

ln(sec(θ) + tan(θ)), qu’il fallait ensuite inverser pour trouver y. Autrement dit, dériver quelque
chose qui ressemblait à de l’énergie nous a épargné beaucoup de souffrances.

4. On cherche la solution à l’équation :

y(x0) = −y0

cosh(αx0) = 1 + αy0

x0 =
1

α
argcosh(1 + αy0) =

1

α
ln

(
αy0 +

√
α2y20 − 1

)

Exercice 31 : Principe d’un pH-mètre

1. On est à haute température si
ZeV0

kBT
≪ 1, i.e. si T ≫ ZeV0

kB
. On regarde le DL de sinh en 0 à

l’ordre 1 :
sinh(t) =

et − e−t

2
=
t≪1

1 + t− (1− t)

2
= t

Donc, à haute température, l’équation différentielle devient :

d2V

dx2
=

ZeV0
kBT

≪1

Zen0

ε0

ZeV (x)

kBT
=

Z2e2n0

kBTε0
V

2. On pose d =

√
kBTε0
Z2e2n0

. La solution est de la forme :

V (x) = Ae−x/d +Bex/d

On obtient E⃗ =
(
Ae−x/d−Bex/d

d

)
u⃗x. Si B ̸= 0, l’énergie électrostatique volumique diverge, ce

qui est absurde. Donc B = 0. On a la condition initiale V (0) = V0, ce qui donne la solution :
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V (x) = V0e
−x/d

3. Le milieu peut être considéré comme infini si sa taille typique L est très grande devant d.
Pour de l’acide chlorhydrique à C = 0.1mol L−1, on a une solution de H3O+ et Cl−, donc Z = 1,
et n0 = N

V = NA
N/NA

V = NA
n
V = CNA = 6 × 1025m−3 (ne pas oublier de convertir les moles par

litre en moles par mètres cubes), et on est à température ambiante, c’est-à-dire T = 300K, ce
qui donne une distance typique de variation du potentiel :

d = 1.5× 10−10m

Si la solution fait 100 mL, la distance typique dans cette solution est L = V 1/3 = 46cm. On a
bien L ≫ d, l’approximation du milieu infini est tout à fait valable. Et on est tellement large
qu’on peut dire que pour des solutions usuelles de TP de chimie, cette approximation est
toujours valable.

Exercice 32 : De la thermodynamique? ! L’expérience de Rüchardt

1. La section du piston est la même à l’intérieur et à l’extérieur, P0 étant la pression
d’équilibre, en appliquant le principe fondamental de la statique au piston :

P0S − PatmS = 0

P0 = Patm

2. On est donc dans les hypothèses de la loi de Laplace :

PV γ = P0V
γ
0

P = P0

(V0

V

)γ

En x = 0, V = V0. Donc V (x) = V0 + Sx. Donc

P = P0

(
1 +

Sx

V0

)−γ

On va applique le PFD au piston, en projection selon l’axe (Ox). On fait le bilan des forces
s’appliquant sur le piston. Il y a le poids, mais peu importe son orientation, il ne rajoutera qu’un
terme constant dans l’équation, donc ne changera pas la pulsation. On peut donc supposer
que le poids est normal à l’axe (Ox). Il y a la réaction du support, mais comme on suppose qu’il
n’y a pas de frottements, elle est normale à l’axe (Ox). Les deux seules forces qui s’appliquent
sont la résultante des forces pressantes à gauche, de l’intérieur de l’enceinte, et à droite, donc
de l’atmosphère. Cela donne l’équation différentielle suivante :

mẍ = PS − P0S = P0S
((

1 +
Sx

V0

)−γ
− 1

)
Le piston n’a été perturbé que "légèrement", on peut donc imaginer que x ≪ V0

S . Cela donne
l’équation différentielle :

ẍ =
Sx/V0≪1

P0S

m

(
1− γSx

V0
− 1

)
= −γP0S

2

mV0
x

42/49



Physicité L’oscillateur harmonique (corrections)

On a donc un oscillateur harmonique de pulsation ω0 =

√
γP0S

2

mV0
. La mesure de la pulsation

des petites oscillations permet de remonter à γ.

Exercice 33 : De l’électrocinétique? ! L’autre exercice sur l’oscillateur harmonique amorti

On a le jeu d’équations différentielles :
d2q1
dt2

−d2q2
dt2

+
R

L

dq1
dt

+
1

LC
q1 =

E

L
d2q2
dt2

−d2q1
dt2

+
R

L

dq2
dt

+
1

LC
q2 = 0

On remarque que le couplage entre q1 et q2 est symétrique. Il faut donc faire la somme
et la différence. On pose S = q1 + q2 et D = q1 − q2. On fait la somme des deux équations
différentielles :

R

L
Ṡ +

1

LC
S =

E

L

Ṡ +
1

RC
S =

E

R

On pose τ = RC et S∞ = CE.

Ṡ +
S

τ
=

S∞
τ

On résout l’équation homogène associée Ṡ + S
τ = 0. Sh(t) = Ae−t/τ . On cherche ensuite une

solution particulière, le second membre est constant, donc la solution particulière doit être
constante : Sp = S∞. On a donc :

S(t) = Ae−t/τ + S∞

S(t = 0) = A+ S∞ = 2× CE
2 = S∞, A = 0. Donc S(t) = CE.

On fait ensuite la différence des deux équations différentielles :

2D̈ +
R

L
Ḋ +

1

LC
D =

E

L

D̈ +
R

2L
Ḋ +

1

2LC
D =

E

2L

On pose ω0 =
1√
2LC

, donc on pose D∞ = CE. On cherche ensuite à mettre cette équation
sous forme canonique :

ω0

Q
=

R

2L

Q =
2L

R
√
LC

=
2

R

√
L

C

On a donc :

D̈ +
ω0

Q
Ḋ + ω2

0D = ω2
0D∞

On doit savoir dans quel régime on se place. On calcule donc le facteur de qualité :
Q = 0.7 > 1/2. On est donc en régime pseudo-périodique. On pose τ ′ = 2Q

ω0
et Ω = ω0

√
1− 1

4Q2 .
On résout l’équation homogène associée :
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D̈ +
ω0

Q
Ḋ + ω2

0D = 0

On a : Dh(t) = e−t/τ ′(A cos(Ωt) +B sin(Ωt)). Par ailleurs, on cherche une solution particulière,
le second membre est constant, on cherche donc la solution constante, on trouve Dp = D∞.
Donc on a :

D(t) = Dh(t) +Dp = e−t/τ ′(A cos(Ωt) +B sin(Ωt)) +D∞

On trouve les constantes A et B à l’aide des conditions initiales :D(t = 0) = A+D∞ = 0

Ḋ(t = 0) =−A

τ ′
+BΩ =

E

RA = −D∞ = −CE

B =
1

Ω

(E
R

− D∞
τ ′

)
=
1

Ω

(E
R

− CE

τ ′

)
La solution est donc :

D(t) = CE + e−t/τ ′
(
− CE cos(Ωt)) +

1

Ω

(E
R

− CE

τ ′

)
sin(Ωt)

))
On a finalement :

q1(t) =
S(t) +D(t)

2
=CE +

1

2
e−t/τ ′

(
− CE cos(Ωt)) +

1

Ω

(E
R

− CE

τ ′

)
sin(Ωt)

))
q2(t) =

S(t)−D(t)

2
= −1

2
e−t/τ ′

(
− CE cos(Ωt)) +

1

Ω

(E
R

− CE

τ ′

)
sin(Ωt)

))

t

q

CE
2

0

CE

q1 en bleu, q2
Je pense que cela vous démontre bien que ça n’est pas d’un grand intérêt. Les aspects

qualitatifs sont tout de même importants.

Exercice 34 : De la mécanique quantique? Le puits de potentiel infini

1. En dehors de [0, L], l’équation devient :
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− ℏ2

2m

d2φ

dx2
+∞× φ(x) = Eφ(x)

La seule façon que +∞× φ(x) ne diverge pas est que φ(x) = 0. C’est comme en mécanique
classique, il est impossible de passer une barrière de potentiel infinie. Pour l’annulation à
droite et à gauche, il faut la continuité : d2φ

dx2 peut éventuellement diverger en 0 et en L. Ce qui
fait que dφ

dx peut éventuellement être discontinue en 0 et en L, ce qui fait que φ est dérivable à
gauche et à droite en 0 et en L, donc continue.

2. On a donc, pour x ∈ [0, L] :

− ℏ2

2m

d2φ

dx2
= Eφ(x)

d2φ

dx2
+

2mE

ℏ2
φ = 0

Donc si E < 0, on a avec k =

√
2m|E|
ℏ

,

φ(x) = A cosh(kx) +B sinh(kx)

Si E = 0,
φ(x) = Ax+B

Si E > 0, on a, avec k =

√
2mE

ℏ
,

φ(x) = A cos(kx) +B sin(kx)

3. On suppose que E < 0. On a donc :

φ(0) = A = 0

φ(L) = A cosh(kL) +B sinh(kL) = B sinh(kl) = 0

Donc B = 0 car sinh ne s’annule qu’en 0. Finalement, φ(x) = 0, ce qui est impossible d’après
l’énoncé. On suppose que E = 0. On a donc :

φ(0) = B = 0

φ(L) = AL+B = AL = 0

Donc A = 0, donc φ(x) = 0, ce qui est à nouveau impossible. Donc E > 0.

4. On a donc

φ(x) = A cos(kx) +B sin(kx)

Et φ(0) = A = 0. Donc φ(x) = B sin(kx), donc nécessairement, B ̸= 0. Et :

φ(L) = B sin(kL) = 0

sin(kL) = 0

kL = nπ

n ∈ N∗ √
2mE

ℏ
L = nπ
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2mEL2

ℏ2
= n2π2

E =
ℏ2π2n2

2mL2

5. La question 1 nous dit qu’on a une onde aux extrémités fixes. L’énoncé nous dit qu’on
cherche une solution stationnaire, on a donc une onde stationnaire. Elle est fixée sur une
longueur L. Sa longueur d’onde λn vérifie donc

L =
nλn

2

λn =
2L

n

0 L

n = 1

0 L

n = 2

0 L

n = 3

Donc la quantité de mouvement pn vaut :

pn =
h

λn
=

hn

2L

Donc l’énergie E vaut :

E =
p2n
2m

=
h2n2

8mL2
=

ℏ2(2π)2n2

8mL2
=

ℏ2π2n2

2mL2

Attention, la formule E = hc
λ n’est vraie que pour des particules ultra-relativistes (pc ≫ mc2).

Ici la "vitesse" de la particule n’est pas c.

Problème 3 : Eau et objets

3.1 Une plaque positionnée verticalement

1. Par principe fondamental de la statique, les forces de pression sont l’opposée des forces
de tension de surface. Il suffit de calculer la résultante des forces de tension de surface.
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z

x
x1 x2

F⃗surface

θ(x1)

La composante horizontale de la force linéique appliquée sur le bloc d’eau à gauche vaut :

f1 = −γ
L

L
cos(θ(x1)) = −γ cos(θ(x1))

Donc la composante horizontale de la force linéique à droite vaut donc :

f2 = γ cos(θ(x2))

Donc :

−fx = f2 + f1 = γ(cos(θ(x2))− cos(θ(x1)))

2. On a donc, si on fixe x1 et on prend x quelconque :

−1

2
ρg(z2 − z21) = γ(cos(θ(x))− cos(θ(x1)))

1

2

ρg

γ
z2 + cos(θ(x)) = constante

On pose donc l =

√
γ

ρg
, et on a donc :

1

2

(z
l

)2
+ cos(θ(x)) = constante

3. Il faut exprimer cos(θ(x)) en fonction de z et de x :
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dz

dx

√
dx2 + dz2

θ(x)

θ(x)

On a donc cos(θ(x)) =
dx√

dx2 + dy2
=

1√
1 + z′(x)2

. L’hypothèse |z′(x)| ≪ 1 donne donc :

cos(θ(x)) = (1 + z′(x)2)−1/2 =
|z′(x)|≪1

1− 1

2
z′(x)2

L’équation de la question précédente devient alors :

1

2

(z(x)
l

)2
− 1

2
z′(x)2 = constante

On reconnaît l’énergie mécanique d’un ressort, à un signe près. On pense donc à dériver :

z′′(x)− z

l2
= 0

La solution générale est de la forme :

z(x) = Aex/l +Be−x/l

A = 0 pour éviter la divergence. On a comme condition initiale θ0, que l’on peut relier à z′(0).

Reprenons le schéma fait plus haut : on lit tan(θ) =
dz

dx
= z′(x). Donc :

z′(0) = −B

l
= tan(θ0)

z(x) = −l tan(θ0)e
−x/l

3.2 Interaction entre deux tiges

1. On a toujours :

z′′ − z

l2
= 0

Puisque le problème possède une symétrie (parité par rapport à l’axe z), on va choisir
d’écrire la solution de la forme :

z(x) = A cosh
(x
l

)
+B sinh

(x
l

)
Par symétrie, B = 0 (en effet, cosh est paire et sinh est impaire, pour que la solution soit

paire il faut donc qu’il n’y ait pas de terme en sinh). Ensuite, on regarde ce qui se passe en xa :

z(xa) = A cosh
(xa

l

)
= za

A =
za

cosh
(xa

l

)
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Donc :

z(x) = za
cosh

(x
l

)
cosh

(xa
l

)
En particulier, en x = 0 :

z0 = z(x = 0) =
za

cosh
(xa

l

)
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